in

Astronomically controlled aridity in the Sahara since at least 11 million years ago

  • Thomas, N. & Nigam, S. Twentieth-century climate change over Africa: seasonal hydroclimate trends and Sahara desert expansion. J. Clim. 31, 3349–3370 (2018).

    Article 

    Google Scholar 

  • Maley J. in The Sahara and the Nile (eds Martin A. J. Williams and Hugues Faure) 63–86 (Balkema, 1980).

  • deMenocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).

    Article 

    Google Scholar 

  • Trauth, M. H., Larrasoaña, J. C. & Mudelsee, M. Trends, rhythms and events in Plio-Pleistocene African climate. Quat. Sci. Rev. 28, 399–411 (2009).

    Article 

    Google Scholar 

  • Muhs, D. R. et al. The antiquity of the Sahara desert: new evidence from the mineralogy and geochemistry of Pliocene paleosols on the Canary Islands, Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 533, 109245 (2019).

    Article 

    Google Scholar 

  • Schuster, M. et al. The age of the Sahara desert. Science 311, 821 (2006).

    Article 

    Google Scholar 

  • Zhang, Z. et al. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the late Miocene. Nature 513, 401–404 (2014).

    Article 

    Google Scholar 

  • Kroepelin, S. & Swezey, C. S. Revisiting the age of the Sahara desert. Science 312, 1138–1139 (2006).

    Article 

    Google Scholar 

  • McQuarrie, N. & van Hinsbergen, D. J. J. Retrodeforming the Arabia–Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology 41, 315–318 (2013).

    Article 

    Google Scholar 

  • Allen, M. B. & Armstrong, H. A. Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 265, 52–58 (2008).

    Article 

    Google Scholar 

  • Tiedemann, R., Sarnthein, M. & Shackleton, N. J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography 9, 619–638 (1994).

    Article 

    Google Scholar 

  • Tjallingii, R. et al. Coherent high- and low-latitude control of the northwest African hydrological balance. Nat. Geosci. 1, 670–675 (2008).

    Article 

    Google Scholar 

  • Skonieczny, C. et al. African humid periods triggered the reactivation of a large river system in western Sahara. Nat. Commun. 6, 8751 (2015).

    Article 

    Google Scholar 

  • Ruddiman. W. F. et al. (eds) Proceedings of the Ocean Drilling Program: Scientific Results Vol. 108 (ODP, 1989).

  • Skonieczny, C. et al. Monsoon-driven Saharan dust variability over the past 240,000 years. Sci. Adv. 5, eaav1887 (2019).

    Article 

    Google Scholar 

  • McGee, D., deMenocal, P. B., Winckler, G., Stuut, J. B. W. & Bradtmiller, L. I. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth Planet. Sci. Lett. 371–372, 163–176 (2013).

    Article 

    Google Scholar 

  • Mulitza, S. et al. Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature 466, 226–228 (2010).

    Article 

    Google Scholar 

  • Drake, N. A., Blench, R. M., Armitage, S. J., Bristow, C. S. & White, K. H. Ancient watercourses and biogeography of the Sahara explain the peopling of the desert. Proc. Natl Acad. Sci. USA 108, 458–462 (2011).

    Article 

    Google Scholar 

  • Larrasoaña, J. C., Roberts, A. P. & Rohling, E. J. Dynamics of green Sahara periods and their role in hominin evolution. PLoS ONE 8, e76514 (2013).

    Article 

    Google Scholar 

  • Tierney, J. E., Pausata, F. S. R. & deMenocal, P. B. Rainfall regimes of the green Sahara. Sci. Adv. 3, e1601503 (2017).

    Article 

    Google Scholar 

  • Mori, F. The earliest Saharan rock-engravings. Antiquity 48, 87–92 (1974).

    Article 

    Google Scholar 

  • McGee, D., Broecker, W. S. & Winckler, G. Gustiness: the driver of glacial dustiness? Quat. Sci. Rev. 29, 2340–2350 (2010).

    Article 

    Google Scholar 

  • Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).

    Article 

    Google Scholar 

  • Abell, J. T., Winckler, G., Anderson, R. F. & Herbert, T. D. Poleward and weakened westerlies during Pliocene warmth. Nature 589, 70–75 (2021).

    Article 

    Google Scholar 

  • Burls, N. J. & Fedorov, A. V. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proc. Natl Acad. Sci. USA 114, 12888–12893 (2017).

    Article 

    Google Scholar 

  • Moussa, A. et al. Lake Chad sedimentation and environments during the late Miocene and Pliocene: new evidence from mineralogy and chemistry of the Bol core sediments. J. Afr. Earth. Sci. 118, 192–204 (2016).

    Article 

    Google Scholar 

  • Washington, R., Todd, M., Middleton, N. J. & Goudie, A. S. Dust‐storm source areas determined by the total ozone monitoring spectrometer and surface observations. Ann. Assoc. Am. Geographers 93, 297–313 (2003).

    Article 

    Google Scholar 

  • Schepanski, K., Tegen, I. & Macke, A. Comparison of satellite based observations of Saharan dust source areas. Remote Sens. Environ. 123, 90–97 (2012).

    Article 

    Google Scholar 

  • Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Article 

    Google Scholar 

  • Sarnthein, M. et al. in Geology of the Northwest African Continental Margin (eds von Rad, U. et al.) 545–604 (Springer, 1982).

  • Jewell, A. M. et al. Three North African dust source areas and their geochemical fingerprint. Earth Planet. Sci. Lett. 554, 116645 (2021).

    Article 

    Google Scholar 

  • Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).

    Article 

    Google Scholar 

  • Feakins, S. J. et al. Northeast African vegetation change over 12 m.y. Geology 41, 295–298 (2013).

    Article 

    Google Scholar 

  • Pagani, M., Freeman, K. H. & Arthur, M. A. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285, 876–879 (1999).

    Article 

    Google Scholar 

  • Beerling, D. J. & Osborne, C. P. The origin of the savanna biome. Glob. Change Biol. 12, 2023–2031 (2006).

    Article 

    Google Scholar 

  • Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R. & deMenocal, P. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. Nat. Geosci. 12, 657–660 (2019).

    Article 

    Google Scholar 

  • Hoetzel, S., Dupont, L., Schefuß, E., Rommerskirchen, F. & Wefer, G. The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution. Nat. Geosci. 6, 1027–1030 (2013).

    Article 

    Google Scholar 

  • Naafs, B. D. A. et al. Strengthening of North American dust sources during the late Pliocene (2.7 Ma). Earth Planet. Sci. Lett. 317–318, 8–19 (2012).

    Article 

    Google Scholar 

  • Kuechler, R. R., Dupont, L. M. & Schefuß, E. Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa. Clim. Past 14, 73–84 (2018).

    Article 

    Google Scholar 

  • Kuechler, R. R., Schefuß, E., Beckmann, B., Dupont, L. & Wefer, G. NW African hydrology and vegetation during the last glacial cycle reflected in plant-wax-specific hydrogen and carbon isotopes. Quat. Sci. Rev. 82, 56–67 (2013).

    Article 

    Google Scholar 

  • Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).

    Article 

    Google Scholar 

  • Faith, J. T., Rowan, J., Du, A. & Koch, P. L. Plio-Pleistocene decline of African megaherbivores: no evidence for ancient hominin impacts. Science 362, 938–941 (2018).

    Article 

    Google Scholar 

  • Potts, R. Hominin evolution in settings of strong environmental variability. Quat. Sci. Rev. 73, 1–13 (2013).

    Article 

    Google Scholar 

  • Maslin, M. A. et al. East African climate pulses and early human evolution. Quat. Sci. Rev. 101, 1–17 (2014).

    Article 

    Google Scholar 

  • Zollikofer, C. P. E. et al. Virtual cranial reconstruction of Sahelanthropus tchadensis. Nature 434, 755 (2005).

    Article 

    Google Scholar 

  • DiMaggio, E. N. et al. Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia. Science 347, 1355–1359 (2015).

    Article 

    Google Scholar 

  • Bobe, R. & Wood, B. Estimating origination times from the early hominin fossil record. Evol. Anthropol. 31, 92–102 (2022).

  • Uno, K. T., Polissar, P. J., Jackson, K. E. & deMenocal, P. B. Neogene biomarker record of vegetation change in eastern Africa. Proc. Natl Acad. Sci. USA 113, 201521267 (2016).

    Article 

    Google Scholar 

  • Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article 

    Google Scholar 

  • Kumar, A. et al. Seasonal radiogenic isotopic variability of the African dust outflow to the tropical Atlantic Ocean and across to the Caribbean. Earth Planet. Sci. Lett. 487, 94–105 (2018).

    Article 

    Google Scholar 

  • Gama, C. et al. Seasonal patterns of Saharan dust over Cape Verde—a combined approach using observations and modelling. Tellus B 67, 24410 (2015).

    Article 

    Google Scholar 

  • Patey, M. D., Achterberg, E. P., Rijkenberg, M. J. & Pearce, R. Aerosol time-series measurements over the tropical Northeast Atlantic Ocean: dust sources, elemental composition and mineralogy. Mar. Chem. 174, 103–119 (2015).

    Article 

    Google Scholar 

  • Skonieczny, C. et al. A three-year time series of mineral dust deposits on the West African margin: sedimentological and geochemical signatures and implications for interpretation of marine paleo-dust records. Earth Planet. Sci. Lett. 364, 145–156 (2013).

    Article 

    Google Scholar 

  • Ratmeyer, V., Fischer, G. & Wefer, G. Lithogenic particle fluxes and grain size distributions in the deep ocean off northwest Africa: mplications for seasonal changes of aeolian dust input and downward transport. Deep Sea Res. 1 46, 1289–1337 (1999).

    Article 

    Google Scholar 

  • Bory, A. et al. Atmospheric and oceanic dust fluxes in the northeastern tropical Atlantic Ocean: how close a coupling? Ann. Geophys. 20, 2067–2076 (2002).

    Article 

    Google Scholar 

  • Chiapello, I. et al. Origins of African dust transported over the northeastern tropical Atlantic. J. Geophys. Res. Atmos. 102, 13701–13709 (1997).

    Article 

    Google Scholar 

  • Stuut, J.-B. et al. Provenance of present-day eolian dust collected off NW Africa. J. Geophys. Res. Atmos. 110, D04202 (2005).

    Article 

    Google Scholar 

  • Schepanski, K., Tegen, I. & Macke, A. Saharan dust transport and deposition towards the tropical northern Atlantic. Atmos. Chem. Phys. 9, 1173–1189 (2009).

    Article 

    Google Scholar 

  • Caquineau, S., Gaudichet, A., Gomes, L. & Legrand, M. Mineralogy of Saharan dust transported over northwestern tropical Atlantic Ocean in relation to source regions. J. Geophys. Res. Atmos. 107, 4251 (2002).

    Article 

    Google Scholar 

  • Formenti, P. et al. Regional variability of the composition of mineral dust from western Africa: results from the AMMA SOP0/DABEX and DODO field campaigns. J. Geophys. Res. Atmos. 113, D00C13 (2008).

    Article 

    Google Scholar 

  • Friese, C. A., van Hateren, J. A., Vogt, C., Fischer, G. & Stuut, J.-B. W. Seasonal provenance changes in present-day Saharan dust collected in and off Mauritania. Atmos. Chem. Phys. 17, 10163 (2017).

    Article 

    Google Scholar 

  • McConnell, C. L. et al. Seasonal variations of the physical and optical characteristics of Saharan dust: results from the Dust Outflow and Deposition to the Ocean (DODO) experiment. J. Geophys. Res. Atmos. 113, D14S05 (2008).

    Article 

    Google Scholar 

  • Salvador, P. et al. Composition and origin of PM10 in Cape Verde: characterization of long-range transport episodes. Atmos. Environ. 127, 326–339 (2016).

    Article 

    Google Scholar 

  • Skonieczny, C. et al. The 7-13 March 2006 major Saharan outbreak: multiproxy characterization of mineral dust deposited on the West African margin. J. Geophys. Res. Atmos. 116, D18210 (2011).

    Article 

    Google Scholar 

  • Zhao, W., Balsam, W., Williams, E., Long, X. & Ji, J. Sr–Nd–Hf isotopic fingerprinting of transatlantic dust derived from North Africa. Earth Planet. Sci. Lett. 486, 23–31 (2018).

    Article 

    Google Scholar 

  • Holz, C., Stuut, J.-B. W. & Henrich, R. Terrigenous sedimentation processes along the continental margin off NW Africa: implications from grain-size analysis of seabed sediments. Sedimentology 51, 1145–1154 (2004).

    Article 

    Google Scholar 

  • Matthewson, A. P., Shimmield, G. B., Kroon, D. & Fallick, A. E. A 300 kyr high‐resolution aridity record of the North African continent. Paleoceanography 10, 677–692 (1995).

    Article 

    Google Scholar 

  • Wilkens, R. H. et al. Revisiting Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy ODP leg 154 from 0 to 5 Ma. Clim. Past 13, 779–793 (2017).

    Article 

    Google Scholar 

  • Manivit, H. in Proceedings of the Ocean Drilling Program: Scientific Results Vol. 108 (eds Ruddiman, W. et al.) 35–69 (ODP, 1989).

  • Raffi, I. et al. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat. Sci. Rev. 25, 3113–3137 (2006).

    Article 

    Google Scholar 

  • Ogg, J. G. in The Geologic Time Scale (eds Gradstein, F. M. et al.) 85–113 (Elsevier, 2012).

  • Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142 (2011).

    Article 

    Google Scholar 

  • Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  • Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004).

    Article 

    Google Scholar 

  • Schulz, M. & Mudelsee, M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput. Geosci. 28, 421–426 (2002).

    Article 

    Google Scholar 

  • Weltje, G. J. & Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application. Earth Planet. Sci. Lett. 274, 423–438 (2008).

    Article 

    Google Scholar 

  • Weltje, G. J. et al. in Micro-XRF Studies of Sediment Cores (eds Croudace, I. W. & Rothwell, R. G.) 507–534 (Springer, 2015).

  • Bloemsma, M. R. Development of a Modelling Framework for Core Data Integration using XRF Scanning (Delft University of Technology, 2015).

  • Gac, J.-Y. & Kane, A. Le fleuve Sénégal: I. Bilan hydrologique et flux continentaux de matières particulaires à l’embouchure. Sci. Geol. Mem. 31, 99–130 (1986).

    Google Scholar 

  • Scheuvens, D., Schütz, L., Kandler, K., Ebert, M. & Weinbruch, S. Bulk composition of northern African dust and its source sediments—a compilation. Earth Sci. Rev. 116, 170–194 (2013).

    Article 

    Google Scholar 

  • Orange, D. & Gac, J.-Y. Bilan géochimique des apports atmosphériques en domaines sahélien et soudano-guinéen d’Afrique de l’Ouest (bassins supérieurs du Sénégal et de la Gambie). Géodynamique 5, 51–65 (1990).

    Google Scholar 

  • Orange, D., Gac, J.-Y. & Diallo, M. I. Geochemical assessment of atmospheric deposition including Harmattan dust in continental West Africa. In Tracers in Hydrology: Proc. Yokohama Symposium (ed. Peters, N. E., Hoehn, E., Leibundgut, C., Tase, N. & Walling, D.E.) 303–312 (IAHS, 1993).

  • Guieu, C. & Thomas, A. J. in The Impact of Desert Dust Across the Mediterranean (eds Guersoni, S. & Chester, R.) 207–216 (Springer, 1996).

  • Criado, C. & Dorta, P. An unusual ‘blood rain’ over the Canary Islands (Spain). The storm of January 1999. J. Arid. Environ. 55, 765–783 (2003).

    Article 

    Google Scholar 

  • Viana, M., Querol, X., Alastuey, A., Cuevas, E. & Rodrı́guez, S. Influence of African dust on the levels of atmospheric particulates in the Canary Islands air quality network. Atmos. Environ. 36, 5861–5875 (2002).

    Article 

    Google Scholar 

  • Formenti, P., Elbert, W., Maenhaut, W., Haywood, J. & Andreae, M. O. Chemical composition of mineral dust aerosol during the Saharan Dust Experiment (SHADE) airborne campaign in the Cape Verde region, September 2000. J. Geophys. Res. Atmos. 108, 8576 (2003).

    Article 

    Google Scholar 

  • Linke, C. et al. Optical properties and mineralogical composition of different Saharan mineral dust samples: a laboratory study. Atmos. Chem. Phys. 6, 3315–3323 (2006).

    Article 

    Google Scholar 

  • Khiri, F., Ezaidi, A. & Kabbachi, K. Dust deposits in Souss–Massa basin, south-west of Morocco: granulometrical, mineralogical and geochemical characterisation. J. Afr. Earth. Sci. 39, 459–464 (2004).

    Article 

    Google Scholar 

  • Moreno, T. et al. Geochemical variations in aeolian mineral particles from the Sahara–Sahel Dust Corridor. Chemosphere 65, 261–270 (2006).

    Article 

    Google Scholar 

  • Mounkaila, M. Spectral and Mineralogical Properties of Potential Dust Sources on a Transect from the Bodélé Depresseion (Central Sahara) to the Lake Chad in the Sahel (Univ. Hohenheim, 2006).

  • Herrmann, L., Jahn, R. & Maurer, T. Mineral dust around the Sahara—from source to sink. A review with emphasis on contributions of the German soil science community in the last twenty years. J. Plant Nutr. Soil Sci. 173, 811–821 (2010).

    Article 

    Google Scholar 

  • Tiedemann, R. Acht Millionen Jahre Klimageschichte von Nordwest Afrika und Paläo-Ozeanographie des angrenzenden Atlantiks: Hochauflösende Zeitreihen von ODP-Sites 658–661 (Christian-Albrechts-Universität, 1991).

  • Cohen, A. S., O’Nions, R. K., Siegenthaler, R. & Griffin, W. L. Chronology of the pressure–temperature history recorded by a granulite terrain. Contrib. Mineral. Petrol. 98, 303–311 (1988).

    Article 

    Google Scholar 

  • Pin, C. & Zalduegui, J. S. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal. Chim. Acta 339, 79–89 (1997).

    Article 

    Google Scholar 

  • Vance, D. & Thirlwell, M. An assessment of mass discrimination in MC-ICPMS using Nd isotopes. Chem. Geol. 185, 227–240 (2002).

    Article 

    Google Scholar 

  • Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).

    Article 

    Google Scholar 

  • Jacobsen, S. B. & Wasserburg, G. J. Sm–Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 50, 139–155 (1980).

    Article 

    Google Scholar 

  • Dietze, E. et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sediment. Geol. 243–244, 169–180 (2011).

    Google Scholar 

  • Wood, S. N. Generalized Additive Models: An iIntroduction with R (CRC Press, 2017).

  • Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001).

    Google Scholar 

  • Castillo, S. et al. Trace element variation in size-fractionated African desert dusts. J. Arid. Environ. 72, 1034–1045 (2008).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Helping cassava farmers by extending crop life

    Plant phenology changes and drivers on the Qinghai–Tibetan Plateau