IPCC. Climate Change 2021: The Physical Science Basis. (eds Masson-Delmotte, V. et al.) Contribution of working group 1 to the ‘Sixth assessment report of the intergovernmental panel on climate change’ (Cambridge University Press, 2021).
Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).
Google Scholar
Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosc. 7, 716–721 (2014).
Google Scholar
Lin, L., Gettelman, A., Feng, S. & Fu, Q. Simulated climatology and evolution of aridity in the 21st century. J. Geophys. Res. Atmos. 120, 5795–5815 (2015).
Google Scholar
Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).
Google Scholar
Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).
Google Scholar
Touma, D., Ashfaq, M., Nayak, M. A., Kao, S.-C. & Diffenbaugh, N. S. A multi-model and multi-index evaluation of drought characteristics in the 21st century. J. Hydrol. 526, 196–207 (2015).
Google Scholar
Liu, W. et al. Global drought and severe drought-affected populations in 1.5 and 2 °C warmer worlds. Earth Syst. Dyn. 9, 267–283 (2018).
Google Scholar
Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).
Google Scholar
Swann, A. L., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).
Google Scholar
Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).
Google Scholar
Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2021).
Google Scholar
Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K. & Rasmussen, R. Slower snowmelt in a warmer world. Nat. Clim. Change 7, 214–219 (2017).
Google Scholar
Harpold, A. A. et al. Soil moisture response to snowmelt timing in mixed-conifer subalpine forests. Hydrol. Process. 29, 2782–2798 (2015).
Google Scholar
Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).
Google Scholar
Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).
Google Scholar
Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).
Google Scholar
Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).
Google Scholar
Parton, W. et al. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315, 361–364 (2007).
Google Scholar
Adair, E. C. et al. Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Glob. Change Biol. 14, 2636–2660 (2008).
Google Scholar
Adair, E. C., Parton, W. J., King, J. Y., Brandt, L. A. & Lin, Y. Accounting for photodegradation dramatically improves prediction of carbon losses in dryland systems. Ecosphere 8, e01892 (2017).
Google Scholar
Chen, M. et al. Simulation of the effects of photodecay on long-term litter decay using DayCent. Ecosphere 7, e01631 (2016).
Asao, S., Parton, W. J., Chen, M. & Gao, W. Photodegradation accelerates ecosystem N cycling in a simulated California grassland. Ecosphere 9, e02370 (2018).
Google Scholar
Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).
Google Scholar
Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).
Google Scholar
Berg, A. & McColl, K. A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Change 11, 331–337 (2021).
Google Scholar
Whitford, W. G. & Duval, B. D. Ecology of Desert Systems 2nd edn (Academic Press, 2020).
Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).
Google Scholar
Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).
Google Scholar
Nielsen, U. N. & Ball, B. A. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Glob. Change Biol. 21, 1407–1421 (2015).
Google Scholar
Collins, S. L. et al. A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annu. Rev. Ecol. Evol. Syst. 45, 397–419 (2014).
Google Scholar
Kim, D.-G., Mu, S., Kang, S. & Lee, D. Factors controlling soil CO2 effluxes and the effects of rewetting on effluxes in adjacent deciduous, coniferous, and mixed forests in Korea. Soil Biol. Biochem. 42, 576–585 (2010).
Google Scholar
Curiel Yuste, J., Janssens, I. A., Carrara, A., Meiresonne, L. & Ceulemans, R. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiol. 23, 1263–1270 (2003).
Google Scholar
Savage, K., Davidson, E. A., Richardson, A. D. & Hollinger, D. Y. Three scales of temporal resolution from automated soil respiration measurements. Agric. Meteorol. 149, 2012–2021 (2009).
Google Scholar
Hao, Y., Wang, Y., Mei, X. & Cui, X. The response of ecosystem CO2 exchange to small precipitation pulses over a temperate steppe. Plant Ecol. 209, 335–347 (2010).
Google Scholar
Krüger, J. P., Beckedahl, H., Gerold, G. & Jungkunst, H. F. Greenhouse gas emission peaks following natural rewetting of two wetlands in the southern Ukhahlamba-Drakensberg Park, South Africa. S. Afr. Geogr. J. 96, 113–118 (2013).
Google Scholar
Haverd, V., Ahlström, A., Smith, B. & Canadell, J. G. Carbon cycle responses of semi-arid ecosystems to positive asymmetry in rainfall. Glob. Change Biol. 23, 793–800 (2017).
Google Scholar
Kim, D. G., Vargas, R., Bond-Lamberty, B. & Turetsky, M. R. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9, 2459–2483 (2012).
Google Scholar
Barnard, R. L., Blazewicz, S. J. & Firestone, M. K. Rewetting of soil: revisiting the origin of soil CO2 emissions. Soil Biol. Biochem. 147, 107819 (2020).
Prieto, I., Armas, C. & Pugnaire, F. I. Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytol. 193, 830–841 (2012).
Google Scholar
Neumann, R. B. & Cardon, Z. G. The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytol. 194, 337–352 (2012).
Google Scholar
Mooney, H. A., Gulmon, S. L., Rundel, P. W. & Ehleringer, J. Further observations on the water relations of Prosopis tamarugo of the northern Atacama desert. Oecologia 44, 177–180 (1980).
Google Scholar
Richards, J. H. & Caldwell, M. M. Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73, 486–489 (1987).
Google Scholar
Caldwell, M. M., Dawson, T. E. & Richards, J. H. Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113, 151–161 (1998).
Google Scholar
Brooks, J. R., Meinzer, F. C., Coulombe, R. & Gregg, J. Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiol. 22, 1107–1117 (2002).
Google Scholar
Lee, J. E., Oliveira, R. S., Dawson, T. E. & Fung, I. Root functioning modifies seasonal climate. Proc. Natl Acad. Sci. USA 102, 17576–17581 (2005).
Google Scholar
Robinson, J. L., Slater, L. D. & Schäfer, K. V. R. Evidence for spatial variability in hydraulic redistribution within an oak–pine forest from resistivity imaging. J. Hydrol. 430-431, 69–79 (2012).
Google Scholar
Oliveira, R. S., Dawson, T. E., Burgess, S. S. O. & Nepstad, D. C. Hydraulic redistribution in three Amazonian trees. Oecologia 145, 354–363 (2005).
Google Scholar
Zapater, M. et al. Evidence of hydraulic lift in a young beech and oak mixed forest using 18O soil water labelling. Trees 25, 885–894 (2011).
Google Scholar
Sardans, J. & Peñuelas, J. Hydraulic redistribution by plants and nutrient stoichiometry: shifts under global change. Ecohydrology 7, 1–20 (2014).
Google Scholar
Schenk, H. J. & Jackson, R. B. Rooting depths, lateral root spreads and below‐ground/above‐ground allometries of plants in water‐limited ecosystems. J. Ecol. 90, 480–494 (2002).
Google Scholar
Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).
Google Scholar
Wang, L., Kaseke, K. F. & Seely, M. K. Effects of non-rainfall water inputs on ecosystem functions. WIREs Water 4, e1179 (2017).
Dawson, T. E. & Goldsmith, G. R. The value of wet leaves. New Phytol. 219, 1156–1169 (2018).
Google Scholar
Agam, N. & Berliner, P. R. Dew formation and water vapor adsorption in semi-arid environments – a review. J. Arid. Environ. 65, 572–590 (2006).
Google Scholar
Dirks, I., Navon, Y., Kanas, D., Dumbur, R. & Grünzweig, J. M. Atmospheric water vapor as driver of litter decomposition in Mediterranean shrubland and grassland during rainless seasons. Glob. Change Biol. 16, 2799–2812 (2010).
Google Scholar
Jacobson, K. et al. Non-rainfall moisture activates fungal decomposition of surface litter in the Namib Sand Sea. PLoS ONE 10, e0126977 (2015).
Google Scholar
McHugh, T. A., Morrissey, E. M., Reed, S. C., Hungate, B. A. & Schwartz, E. Water from air: an overlooked source of moisture in arid and semiarid regions. Sci. Rep. 5, 13767 (2015).
Google Scholar
Gliksman, D. et al. Biotic degradation at night, abiotic degradation at day: positive feedbacks on litter decomposition in drylands. Glob. Change Biol. 23, 1564–1574 (2017).
Google Scholar
Goldsmith, G. R., Matzke, N. J. & Dawson, T. E. The incidence and implications of clouds for cloud forest plant water relations. Ecol. Lett. 16, 307–314 (2013).
Google Scholar
Binks, O. et al. Foliar water uptake in Amazonian trees: evidence and consequences. Glob. Change Biol. 25, 2678–2690 (2019).
Google Scholar
Benzing, D. H. Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. Clim. Change 39, 519–540 (1998).
Google Scholar
Evans, S., Todd-Brown, K. E. O., Jacobson, K. & Jacobson, P. Non-rainfall moisture: a key driver of microbial respiration from standing litter in arid, semiarid, and mesic grasslands. Ecosystems 23, 1154–1169 (2020).
Google Scholar
Newell, S. Y., Fallon, R. D., Rodriguez, R. M. C. & Groene, L. C. Influence of rain, tidal wetting and relative-humidity on release of carbon-dioxide by standing-dead salt-marsh plants. Oecologia 68, 73–79 (1985).
Google Scholar
Kuehn, K. A., Steiner, D. & Gessner, M. O. Diel mineralization patterns of standing-dead plant litter: implications for CO2 flux from wetlands. Ecology 85, 2504–2518 (2004).
Google Scholar
Doerr, S. H., Shakesby, R. A. & Walsh, R. P. D. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci. Rev. 51, 33–65 (2000).
Google Scholar
Goebel, M.-O., Bachmann, J., Reichstein, M., Janssens, I. A. & Guggenberger, G. Soil water repellency and its implications for organic matter decomposition – is there a link to extreme climatic events? Glob. Change Biol. 17, 2640–26596 (2011).
Google Scholar
Mao, J., Nierop, K. G. J., Dekker, S. C., Dekker, L. W. & Chen, B. Understanding the mechanisms of soil water repellency from nanoscale to ecosystem scale: a review. J. Soils Sediments 19, 171–185 (2019).
Google Scholar
Doerr, S. H., Shakesby, R. A., Dekker, L. W. & Ritsema, C. J. Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. Eur. J. Soil Sci. 57, 741–754 (2006).
Google Scholar
Lebron, I., Robinson, D. A., Oatham, M. & Wuddivira, M. N. Soil water repellency and pH soil change under tropical pine plantations compared with native tropical forest. J. Hydrol. 414-415, 194–200 (2012).
Google Scholar
Buczko, U., Bens, O. & Hüttl, R. F. Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica). Geoderma 126, 317–336 (2005).
Google Scholar
Dekker, L. W. & Ritsema, C. J. Variation in water content and wetting patterns in Dutch water repellent peaty clay and clayey peat soils. CATENA 28, 89–105 (1996).
Google Scholar
de Blas, E., Almendros, G. & Sanz, J. Molecular characterization of lipid fractions from extremely water-repellent pine and eucalyptus forest soils. Geoderma 206, 75–84 (2013).
Google Scholar
MacDonald, L. H. & Huffman, E. L. Post-fire soil water repellency. Soil Sci. Soc. Am. J. 68, 1729–1734 (2004).
Google Scholar
Hewelke, E. et al. Intensity and persistence of soil water repellency in pine forest soil in a temperate continental climate under drought conditions. Water 10, 1121 (2018).
Google Scholar
Borken, W. & Matzner, E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Change Biol. 15, 808–824 (2009).
Google Scholar
Siteur, K. et al. Soil water repellency: a potential driver of vegetation dynamics in coastal dunes. Ecosystems 19, 1210–1224 (2016).
Google Scholar
Austin, A. T. & Vivanco, L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442, 555–558 (2006).
Google Scholar
King, J. Y., Brandt, L. A. & Adair, E. C. Shedding light on plant litter decomposition: advances, implications and new directions in understanding the role of photodegradation. Biogeochemistry 111, 57–81 (2012).
Google Scholar
Moorhead, D. L. & Callaghan, T. Effects of increasing ultraviolet B radiation on decomposition and soil organic matter dynamics: a synthesis and modelling study. Biol. Fertil. Soils 18, 19–26 (1994).
Google Scholar
Sulzberger, B., Austin, A. T., Cory, R. M., Zepp, R. G. & Paul, N. D. Solar UV radiation in a changing world: roles of cryosphere-land-water-atmosphere interfaces in global biogeochemical cycles. Photochem. Photobiol. Sci. 18, 747–774 (2019).
Google Scholar
Austin, A. T., Mendez, M. S. & Ballaré, C. L. Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. Proc. Natl Acad. Sci. USA 113, 4392–4397 (2016).
Google Scholar
Brandt, L. A., King, J. Y., Hobbie, S. E., Milchunas, D. G. & Sinsabaugh, R. L. The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient. Ecosystems 13, 765–781 (2010).
Google Scholar
Pieristè, M. et al. Solar UV-A radiation and blue light enhance tree leaf litter decomposition in a temperate forest. Oecologia 191, 191–203 (2019).
Google Scholar
Wu, C. et al. Photodegradation accelerates coarse woody debris decomposition in subtropical Chinese forests. For. Ecol. Manage. 409, 225–232 (2018).
Google Scholar
Marinho, O. A., Martinelli, L. A., Duarte-Neto, P. J. R., Mazzi, E. A. & King, J. Y. Photodegradation influences litter decomposition rate in a humid tropical ecosystem, Brazil. Sci. Total Environ. 715, 136601 (2020).
Google Scholar
Wang, Q. W. et al. The contribution of photodegradation to litter decomposition in a temperate forest gap and understorey. New Phytol. 229, 2625–2636 (2021).
Google Scholar
Rutledge, S., Campbell, D. I., Baldocchi, D. & Schipper, L. A. Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter. Glob. Change Biol. 16, 3065–3074 (2010).
Williamson, C. E. et al. Solar ultraviolet radiation in a changing climate. Nat. Clim. Change 4, 434–441 (2014).
Google Scholar
Zepp, R. G., Erickson, D. J. III, Paul, N. D. & Sulzberger, B. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks. Photochem. Photobiol. Sci. 10, 261–271 (2011).
Google Scholar
Austin, A. Has water limited our imagination for aridland biogeochemistry? Trends Ecol. Evol. 26, 229–235 (2011).
Google Scholar
McCalley, C. K. & Sparks, J. P. Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326, 837–840 (2009).
Google Scholar
Lee, H., Rahn, T. & Throop, H. L. An accounting of C-based trace gas release during abiotic plant litter degradation. Glob. Change Biol. 18, 1185–1195 (2012).
Google Scholar
Wang, B., Lerdau, M. & He, Y. Widespread production of nonmicrobial greenhouse gases in soils. Glob. Change Biol. 23, 4472–4482 (2017).
Google Scholar
Soper, F. M., McCalley, C. K., Sparks, K. & Sparks, J. P. Soil carbon dioxide emissions from the Mojave desert: isotopic evidence for a carbonate source. Geophys. Res. Lett. 44, 245–251 (2017).
Google Scholar
Day, T. A. & Bliss, M. S. Solar photochemical emission of CO2 from leaf litter: sources and significance to C loss. Ecosystems 23, 1344–1361 (2020).
Google Scholar
Throop, H. L. & Belnap, J. Connectivity dynamics in dryland litter cycles: moving decomposition beyond spatial stasis. Bioscience 69, 602–614 (2019).
Google Scholar
Throop, H. L. & Archer, S. R. Resolving the dryland decomposition conundrum: some new perspectives on potential drivers. Prog. Bot. 70, 171–194 (2009).
Google Scholar
Barnes, P. W. et al. in Progress in Botany Vol. 76 (eds Lüttge, U. & Beyschlag, W.) 273–302 (Springer, 2015).
Barnes, P. W., Throop, H. L., Hewins, D. B., Abbene, M. L. & Archer, S. R. Soil coverage reduces photodegradation and promotes the development of soil-microbial films on dryland leaf litter. Ecosystems 15, 311–321 (2012).
Google Scholar
Joly, F. X., Kurupas, K. L. & Throop, H. L. Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition. Ecology 98, 2255–2260 (2017).
Google Scholar
Weber, B., Büdel, B. & Belnap, J. Biological Soil Crusts: An Organizing Principle in Drylands Vol. 226 (Springer, 2016).
Belnap, J. & Lange, O. L. Biological Soil Crusts: Structure, Function, and Management (Springer, 2001).
Ferrenberg, S., Tucker, C. L. & Reed, S. C. Biological soil crusts: diminutive communities of potential global importance. Front. Ecol. Environ. 15, 160–167 (2017).
Google Scholar
Belnap, J. The world at your feet: desert biological soil crusts. Front. Ecol. Environ. 1, 181–189 (2003).
Google Scholar
Rodríguez-Caballero, E. et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 11, 185–189 (2018).
Google Scholar
Hawkes, C. V. & Flechtner, V. R. Biological soil crusts in a xeric Florida shrubland: composition, abundance, and spatial heterogeneity of crusts with different disturbance histories. Microb. Ecol. 43, 1–12 (2002).
Google Scholar
Langhans, T. M., Storm, C. & Schwabe, A. Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques. Microb. Ecol. 58, 394–407 (2009).
Google Scholar
Veluci, R. M., Neher, D. A. & Weicht, T. R. Nitrogen fixation and leaching of biological soil crust communities in mesic temperate soils. Microb. Ecol. 51, 189–196 (2006).
Google Scholar
Cabała, J. & Rahmonov, O. Cyanophyta and algae as an important component of biological crust from the Pustynia Błędowska Desert (Poland). Pol. Bot. J. 49, 93–100 (2004).
Thiet, R. K., Boerner, R. E. J., Nagy, M. & Jardine, R. The effect of biological soil crusts on throughput of rainwater and N into Lake Michigan sand dune soils. Plant Soil 278, 235–251 (2005).
Google Scholar
Jentsch, A. & Beyschlag, W. Vegetation ecology of dry acidic grasslands in the lowland area of Central Europe. Flora 198, 3–25 (2003).
Google Scholar
Dümig, A. et al. Organic matter from biological soil crusts induces the initial formation of sandy temperate soils. CATENA 122, 196–208 (2014).
Google Scholar
Chamizo, S., Cantón, Y., Rodríguez-Caballero, E. & Domingo, F. Biocrusts positively affect the soil water balance in semiarid ecosystems. Ecohydrology 9, 1208–1221 (2016).
Google Scholar
Couradeau, E. et al. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat. Commun. 7, 10373 (2016).
Google Scholar
Eldridge, D. J. & Greene, R. S. B. Microbiotic soil crusts: a review of their roles in soil and ecological processes in the rangelands of Australia. Aust. J. Soil Res. 32, 389–415 (1994).
Google Scholar
Elbert, W. et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 5, 459–462 (2012).
Google Scholar
Delgado-Baquerizo, M., Maestre, F. T., Rodríguez, J. G. P. & Gallardo, A. Biological soil crusts promote N accumulation in response to dew events in dryland soils. Soil Biol. Biochem. 62, 22–27 (2013).
Google Scholar
Meron, E. From patterns to function in living systems: dryland ecosystems as a case study. Annu. Rev. Condens. Matter Phys. 9, 79–103 (2018).
Google Scholar
Rietkerk, M. et al. Self-organization of vegetation in arid ecosystems. Am. Nat. 160, 524–530 (2002).
Google Scholar
Meron, E. Vegetation pattern formation: the mechanisms behind the forms. Phys. Today 72, 30–36 (2019).
Google Scholar
Gandhi, P., Iams, S., Bonetti, S. & Silber, M. in Dryland Ecohydrology 2nd edn (eds D’Odorico, P. et al.) 469–509 (Springer, 2019).
Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).
Google Scholar
Lejeune, O., Tlidi, M. & Couteron, P. Localized vegetation patches: a self-organized response to resource scarcity. Phys. Rev. E 66, 010901 (2002).
Google Scholar
Belyea, L. R. & Lancaster, J. Inferring landscape dynamics of bog pools from scaling relationships and spatial patterns. J. Ecol. 90, 223–234 (2002).
Google Scholar
Eppinga, M. B. et al. Regular surface patterning of peatlands: confronting theory with field data. Ecosystems 11, 520–536 (2008).
Google Scholar
Hiemstra, C. A., Liston, G. E. & Reiners, W. A. Observing, modelling, and validating snow redistribution by wind in a Wyoming upper treeline landscape. Ecol. Modell. 197, 35–51 (2006).
Google Scholar
Crain, C. M. & Bertness, M. D. Community impacts of a tussock sedge: is ecosystem engineering important in benign habitats? Ecology 86, 2695–2704 (2005).
Google Scholar
Stanton, D. E., Armesto, J. J. & Hedin, L. O. Ecosystem properties self-organize in response to a directional fog-vegetation interaction. Ecology 95, 1203–1212 (2014).
Google Scholar
van de Koppel, J., van der Wal, D., Bakker, J. P. & Herman, P. M. Self-organization and vegetation collapse in salt marsh ecosystems. Am. Nat. 165, E1–E12 (2005).
Google Scholar
Rietkerk, M. & van de Koppel, J. Regular pattern formation in real ecosystems. Trends Ecol. Evol. 23, 169–175 (2008).
Google Scholar
Aguiar, M. R. & Sala, O. E. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol. Evol. 14, 273–277 (1999).
Google Scholar
Bera, B. K., Tzuk, O., Bennett, J. J. & Meron, E. Linking spatial self-organization to community assembly and biodiversity. eLife 10, e73819 (2021).
Garcia-Moya, E. & McKell, C. M. Contribution of shrubs to the nitrogen economy of a desert-wash plant community. Ecology 51, 81–88 (1970).
Google Scholar
Peters, D. P. C. et al. Disentangling complex landscapes: new insights into arid and semiarid system dynamics. Bioscience 56, 491–501 (2006).
Google Scholar
Okin, G. S. et al. Connectivity in dryland landscapes: shifting concepts of spatial interactions. Front. Ecol. Environ. 13, 20–27 (2015).
Google Scholar
Ludwig, J. A., Wilcox, B. P., Breshears, D. D., Tongway, D. J. & Imeson, A. C. Vegetation patches and runoff–erosion as interacting ecohydrological processes in semiarid landscapes. Ecology 86, 288–297 (2005).
Google Scholar
Fahnestock, J. T., Povirk, K. L. & Welker, J. M. Ecological significance of litter redistribution by wind and snow in Arctic landscapes. Ecography 23, 623–631 (2000).
Google Scholar
Schlesinger, W. H. et al. Biological feedbacks in global desertification. Science 247, 1043–1048 (1990).
Google Scholar
Okin, G. S., Sala, O. E., Vivoni, E. R., Zhang, J. & Bhattachan, A. The interactive role of wind and water in functioning of drylands: what does the future hold? Bioscience 68, 670–677 (2018).
Google Scholar
Finzi, A. C. et al. Responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems. Front. Ecol. Environ. 9, 61–67 (2011).
Google Scholar
Yuan, Z. Y. et al. Experimental and observational studies find contrasting responses of soil nutrients to climate change. eLife 6, e23255 (2017).
Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).
Google Scholar
Jiao, F., Shi, X. R., Han, F. P. & Yuan, Z. Y. Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands. Sci. Rep. 6, 19601 (2016).
Google Scholar
Wang, X.-G. et al. Changes in soil C:N:P stoichiometry along an aridity gradient in drylands of northern China. Geoderma 361, 114087 (2020).
Google Scholar
Mulder, C. et al. Connecting the green and brown worlds: allometric and stoichiometric predictability of above- and below-ground networks. Adv. Ecol. Res. 49, 69–175 (2013).
Google Scholar
Yuan, Z. Y. & Chen, H. Y. H. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat. Clim. Change 5, 465–469 (2015).
Google Scholar
Rotenberg, E. & Yakir, D. Contribution of semi-arid forests to the climate system. Science 327, 451–454 (2010).
Google Scholar
Banerjee, T., De Roo, F. & Mauder, M. Explaining the convector effect in canopy turbulence by means of large-eddy simulation. Hydrol. Earth Syst. Sci. 21, 2987–3000 (2017).
Google Scholar
Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).
Google Scholar
Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).
Google Scholar
Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).
Google Scholar
Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).
Google Scholar
Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2, 1897–1905 (2018).
De Jong, R., Verbesselt, J., Schaepman, M. E. & De Bruin, S. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob. Change Biol. 18, 642–655 (2012).
Google Scholar
Pan, N. et al. Increasing global vegetation browning hidden in overall vegetation greening: insights from time-varying trends. Remote Sens. Environ. 214, 59–72 (2018).
Google Scholar
Mueller, T. et al. Human land-use practices lead to global long-term increases in photosynthetic capacity. Remote Sens. 6, 5717–5731 (2014).
Google Scholar
Beck, P. S. A. et al. Changes in forest productivity across Alaska consistent with biome shift. Ecol. Lett. 14, 373–379 (2011).
Google Scholar
Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).
Google Scholar
Aguirre-Gutiérrez, J. et al. Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecol. Lett. 22, 855–865 (2019).
Google Scholar
Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).
Google Scholar
Stocker, B. D. et al. Drought impacts on terrestrial primary production underestimated by satellite monitoring. Nat. Geosci. 12, 264–270 (2019).
Google Scholar
Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 236–244 (2017).
Google Scholar
Davenport, D. W., Breshears, D. D., Wilcox, B. P. & Allen, C. D. Viewpoint: sustainability of piñon-juniper ecosystems – a unifying perspective of soil erosion thresholds. J. Range Manage. 51, 231 (1998).
Google Scholar
Briske, D. D., Fuhlendorf, S. D. & Smeins, F. E. A unified framework for assessment and application of ecological thresholds. Rangel. Ecol. Manage. 59, 225–236 (2006).
Google Scholar
Kayler, Z. E. et al. Experiments to confront the environmental extremes of climate change. Front. Ecol. Environ. 13, 219–225 (2015).
Google Scholar
Haase, P. et al. The next generation of site-based long-term ecological monitoring: linking essential biodiversity variables and ecosystem integrity. Sci. Total Environ. 613–614, 1376–1384 (2018).
Google Scholar
Halbritter, A. H. et al. The handbook for standardised field and laboratory measurements in terrestrial climate‐change experiments and observational studies (ClimEx). Methods Ecol. Evol. 11, 22–37 (2020).
Google Scholar
De Boeck, H. J. et al. Global change experiments: challenges and opportunities. Bioscience 65, 922–931 (2015).
Google Scholar
Kreyling, J. et al. To replicate, or not to replicate – that is the question: how to tackle nonlinear responses in ecological experiments. Ecol. Lett. 21, 1629–1638 (2018).
De Boeck, H. J. et al. Understanding ecosystems of the future will require more than realistic climate change experiments – a response to Korell et al. Glob. Change Biol. 26, e6–e7 (2020).
Google Scholar
Hanson, P. J. & Walker, A. P. Advancing global change biology through experimental manipulations: where have we been and where might we go? Glob. Change Biol. 26, 287–299 (2020).
Google Scholar
Paschalis, A. et al. Rainfall manipulation experiments as simulated by terrestrial biosphere models: where do we stand? Glob. Change Biol. 26, 3336–3355 (2020).
Google Scholar
Scheffer, M., Carpenter, S. R., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).
Google Scholar
Diaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).
Google Scholar
Thonicke, K. et al. Advancing the understanding of adaptive capacity of social‐ecological systems to absorb climate extremes. Earths Future 8, e2019EF001221 (2020).
Source: Ecology - nature.com