in

Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor

  • Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 326, 123–125 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tian H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature. 586, 248–256 (2020).

  • WMO. WMO Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2019. Tech. Rep. (2020).

  • Butterbach-Bahl, K., Stange, F., Papen, H. & Li, C. Regional inventory of nitric oxide and nitrous oxide emissions for forest soils of southeast Germany using the biogeochemical model PnET-N-DNDC. J. Geophys. Res. – Atmospheres 106, 34155–34166 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kesik, M. et al. Inventories of N2O and NO emissions from European forest soils. Biogeosciences 2, 353–375 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Park, S. et al. Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nat. Geosci. 5, 261–265 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • World Bank. World Development Indicators: Fertiliser consumption (AG.CON.FERT.ZS), https://data.worldbank.org/indicator/AG.CON.FERT.ZS (2019).

  • Tian, H. et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Glob. Change Biol. 25, 640–659 (2019).

    ADS 
    Article 

    Google Scholar 

  • Hurtt, G. et al. Harmonization of global land-use change and management for the period 850-2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).

  • Sebilo, M., Mayer, B., Nicolardot, B., Pinay, G. & Mariotti, A. Long-term fate of nitrate fertilizer in agricultural soils. Proc. Natl Acad. Sci. USA 110, 18185–18189 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Galloway, J. N. et al. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 320, 889–892 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 368, 1–13 (2013).

    Google Scholar 

  • Roy, E. D., Hammond Wagner, C. R. & Niles, M. T. Hot spots of opportunity for improved cropland nitrogen management across the United States. Environ. Res. Lett. 16, (2021).

  • Lett, S. & Michelsen, A. Seasonal variation in nitrogen fixation and effects of climate change in a subarctic heath. Plant Soil 379, 193–204 (2014).

    CAS 
    Article 

    Google Scholar 

  • Wang, W. et al. Characteristics of Atmospheric Reactive Nitrogen Deposition in Nyingchi City. Sci. Rep. 9, 1–11 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Verma, P. & Sagar, R. Effect of nitrogen (N) deposition on soil-N processes: a holistic approach. Sci. Rep. 10, 1–16 (2020).

    Article 
    CAS 

    Google Scholar 

  • Peng, J. et al. Global Carbon Sequestration Is Highly Sensitive to Model-Based Formulations of Nitrogen Fixation. Glob. Biogeochem. Cycles 34, 1–15 (2020).

    Article 
    CAS 

    Google Scholar 

  • Leitner, S. et al. Closing maize yield gaps in sub-Saharan Africa will boost soil N2O emissions. Curr. Opin. Environ. Sustain. 47, 95–105 (2020).

    Article 

    Google Scholar 

  • Venterea, R. T. et al. Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems. Front. Ecol. Environ. 10, 562–570 (2012).

    Article 

    Google Scholar 

  • Wagner-Riddle, C., Baggs, E. M., Clough, T. J., Fuchs, K. & Petersen, S. O. Mitigation of nitrous oxide emissions in the context of nitrogen loss reduction from agroecosystems: managing hot spots and hot moments. Curr. Opin. Environ. Sustain. 47, 46–53 (2020).

    Article 

    Google Scholar 

  • Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hartmann, A. A., Barnard, R. L., Marhan, S. & Niklaus, P. A. Effects of drought and N-fertilization on N cycling in two grassland soils. Oecologia 171, 705–717 (2013).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Inatomi, M., Hajima, T. & Ito, A. Fraction of nitrous oxide production in nitrification and its effect on total soil emission: A meta-analysis and global-scale sensitivity analysis using a process-based model. Plos One 14, e0219159 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, Z. et al. Global patterns and controlling factors of soil nitrification rate. Glob. Change Biol. 26, 4147–4157 (2020).

    ADS 
    Article 

    Google Scholar 

  • Reichenau, T. G., Klar, C. W. & Schneider, K. Effects of Climate Change on Nitrate Leaching. In Regional Assessment of Global Change Impacts: The Project GLOWA-Danube (eds Mauser, W. & Prasch, M.) 623–629 (Springer, 2016).

  • He, W. et al. Climate change impacts on crop yield, soil water balance and nitrate leaching in the semiarid and humid regions of Canada. PLoS ONE 13, 1–19 (2018).

    Google Scholar 

  • Mas-Pla, J. & Menció, A. Groundwater nitrate pollution and climate change: learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia). Environ. Sci. Pollut. Res. 26, 2184–2202 (2019).

    CAS 
    Article 

    Google Scholar 

  • Stuart, M. E., Gooddy, D. C., Bloomfield, J. P. & Williams, A. T. A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Sci. Total Environ. 409, 2859–2873 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).

    ADS 
    Article 

    Google Scholar 

  • Mitchell, R. A., Mitchell, V. J., Driscoll, S. P., Franklin, J. & Lawlor, D. W. Effects of increased CO2 concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application. Plant, Cell Environ. 16, 521–529 (1993).

    CAS 
    Article 

    Google Scholar 

  • Eisenhauer, N., Cesarz, S., Koller, R., Worm, K. & Reich, P. B. Global change belowground: Impacts of elevated CO 2, nitrogen, and summer drought on soil food webs and biodiversity. Glob. Change Biol. 18, 435–447 (2012).

    ADS 
    Article 

    Google Scholar 

  • Ri, X. & Prentice, I. C. Terrestrial nitrogen cycle simulation with a dynamic global vegetation model. Glob. Change Biol. 14, 1745–1764 (2008).

    ADS 
    Article 

    Google Scholar 

  • Ri, X., Prentice, I. C., Spahni, R. & Niu, H. S. Modelling terrestrial nitrous oxide emissions and implications for climate feedback. N. Phytologist 196, 472–488 (2012).

    Article 
    CAS 

    Google Scholar 

  • Giltrap, D. L. & Ausseil, A.-G. E. Upscaling NZ-DNDC using a regression based meta-model to estimate direct N2O emissions from New Zealand grazed pastures. Sci. Total Environ. 539, 221–230 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Thompson, R. L. et al. TransCom N2O model inter-comparison – Part 1: Assessing the influence of transport and surface fluxes on tropospheric N2O variability. Atmos. Chem. Phys. 14, 4349–4368 (2014).

    ADS 
    Article 

    Google Scholar 

  • Thompson, R. L. et al. TransCom N2O model inter-comparison – Part 2: Atmospheric inversion estimates of N2O emissions. Atmos. Chem. Phys. 14, 6177–6194 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Thompson, R. L. et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Change, 8, (2019).

  • Houlton, B. Z. & Bai, E. Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc. Natl Acad. Sci. USA 106, 21713–21716 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bai, E., Houlton, B. Z. & Wang, Y. P. Isotopic identification of nitrogen hotspots across natural terrestrial ecosystems. Biogeosciences 9, 3287–3304 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396, 1–26 (2015).

    CAS 
    Article 

    Google Scholar 

  • Craine, J. M. et al. Convergence of soil nitrogen isotopes across global climate gradients. Sci. Rep. 5, 1–8 (2015).

    Google Scholar 

  • Toyoda, S. et al. Decadal time series of tropospheric abundance of N2O isotopomers and isotopologues in the northern hemisphere obtained by the long-term observation at Hateruma Island, Japan. J. Geophys. Res. – Atmospheres 118, 1–13 (2013).

    Google Scholar 

  • Harris, E. et al. Tracking nitrous oxide emission processes at a suburban site with semicontinuous, in situ measurements of isotopic composition. J. Geophys. Res. – Atmospheres 122, 1–21 (2017).

    CAS 

    Google Scholar 

  • Harris, E. et al. Denitrifying pathways dominate nitrous oxide emissions from managed grassland during drought and rewetting. Sci. Adv. 7, eabb7118 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yu, L. et al. Atmospheric nitrous oxide isotopes observed at the high-altitude research station Jungfraujoch, Switzerland. Atmos. Chem. Phys. 20, 6495–6519 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sowers, T., Rodebaugh, A., Yoshida, N. & Toyoda, S. Extending records of the isotopic composition of atmospheric N2O back to 1800 A.D. from air trapped in snow at the South Pole and the Greenland Ice Sheet Project II ice core. Glob. Biogeochem. Cycles 16, 1129 (2002).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Scheer, C., Fuchs, K., Pelster, D. E. & Butterbach-Bahl, K. Estimating global terrestrial denitrification from measured N2O:(N2O + N2) product ratios. Curr. Opin. Environ. Sustainability 47, 72–80 (2020).

    Article 

    Google Scholar 

  • Pilegaard, K. Processes regulating nitric oxide emissions from soils. Philos. Trans. R. Soc. B: Biol. Sci. 368, 1–8, (2013).

  • Thompson, R. Documentation of N2O flux service: Description of the N2O inversion production chain. Technical report, Copernicus Atmospheric Monitoring Service, CAMS73_2018SC2 -Documentation of N2O flux service (2021).

  • Voigt, C. et al. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 1, 420–434 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Pan, B., Lam, S. K., Wang, E., Mosier, A. & Chen, D. New approach for predicting nitrification and its fraction of N2O emissions in global terrestrial ecosystems. Environ. Res. Lett. 16, (2021).

  • Corbeels, M., Hofman, G. & Van Cleemput, O. Fate of fertiliser N applied to winter wheat growing on a Vertisol in a Medditerranean environment. Nutrient Cycl. Agroecosystems 53, 249–258 (1999).

    Article 

    Google Scholar 

  • Jenkinson, D. S., Poulton, P. R., Johnston, A. E. & Powlson, D. S. Turnover of Nitrogen-15-Labeled Fertilizer in Old Grassland. Soil Sci. Soc. Am. J. 68, 865–875 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gardner, J. B. & Drinkwater, L. E. The fate of nitrogen in grain cropping systems: A meta-analysis of 15N field experiments. Ecol. Appl. 19, 2167–2184 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Smith, W. et al. Towards an improved methodology for modelling climate change impacts on cropping systems in cool climates. Sci. Total Environ. 728, 138845 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, Geneva, Switzerland, 2014).

  • Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 368, 1–13 (2013).

  • Congreves, K. A., Wagner-Riddle, C., Si, B. C. & Clough, T. J. Nitrous oxide emissions and biogeochemical responses to soil freezing-thawing and drying-wetting. Soil Biol. Biochem. 117(October 2017), 5–15 (2018).

  • Wagner-Riddle, C. et al. Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles. Nat. Geosci. 10, 279–283 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Byers, E., Bleken, M. A. & Dörsch, P. Winter N2O accumulation and emission in sub-boreal grassland soil depend on clover proportion and soil ph. Environ. Res. Commun. 3, (2021).

  • Doersch, P., Sturite, I. & Trier Kjaer, S. High off-season nitrous oxide emissions negate potential soil C-gain from cover crops in boreal cereal cropping (EGU22-3066). EGU General Assembly 2022, https://doi.org/10.5194/egusphere-egu22-3066 (2022).

  • Prokopiou, M. et al. Constraining N2O emissions since 1940 using firn air isotope measurements in both hemispheres. Atmos. Chem. Phys. 17, 4539–4564 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Yu, L., Harris, E., Lewicka-Szczebak, D. & Mohn J. What can we learn from N2O isotope data? Analytics, processes and modelling. Rap. Commun. Mass Spectr. 34, 1–13 (2020).

  • Smith, K., Thomson, P., Clayton, H., Mctaggart, I. & Conen, F. Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmos. Environ. 32, 3301–3309 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Yao, Z. et al. Soil-atmosphere exchange potential of NO and N2O in different land use types of Inner Mongolia as affected by soil temperature, soil moisture, freeze-thaw, and drying-wetting events. J. Geophys. Res. – Atmospheres 115, 1–17 (2010).

    Google Scholar 

  • Cantarel, A. A. M. et al. Four years of experimental climate change modifies the microbial drivers of N 2O fluxes in an upland grassland ecosystem. Glob. Change Biol. 18, 2520–2531 (2012).

    ADS 
    Article 

    Google Scholar 

  • Zhang, Y. et al. Temperature effects on N2O production pathways in temperate forest soils. Sci. Total Environ. 691, 1127–1136 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, Q. et al. Data-driven estimates of global nitrous oxide emissions from croplands. Natl Sci. Rev. 7, 441–452 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rütting, T., Cizungu Ntaboba, L., Roobroeck, D., Bauters, M., Huygens, D. & Boeckx, P. Leaky nitrogen cycle in pristine African montane rainforest soil. Glob. biogeochemical cycles 29, 1754–1762 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Brookshire, E. N., Gerber, S., Greene, W., Jones, R. T. & Thomas, S. A. Global bounds on nitrogen gas emissions from humid tropical forests. Geophys. Res. Lett. 44, 2502–2510 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Homyak, P. M. et al. Aridity and plant uptake interact to make dryland soils hotspots for nitric oxide (NO) emissions. PNAS 113, E2608–E2616 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. (IGES, Japan, 2006).

  • Davidson, E. A., Suddick, E. C., Rice, C. W. & Prokopy, L. S. More Food, Low Pollution (Mo Fo Lo Po): A Grand Challenge for the 21st Century. J. Environ. Qual. 44, 305–311 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cui, X. et al. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food, In press, (2021).

  • McDaniel, M. D., Mas-Pla, J. & Kaye, M. W. Do “hot moments” become hotter under climate change? Soil nitrogen dynamics from a climate manipulation experiment in a post-harvest forest. Biogeochemistry. https://doi.org/10.1007/s10533-014-0001-3 (2014).

  • Yu, G. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424–429 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).

    Article 

    Google Scholar 

  • FAO, IIASA, ISRIC, ISSCAS, and JRC. Harmonized World Soil Database (version 1.2). (Technical report, FAO, Rome, Italy and IIASA, Laxenburg, Austria, 2012).

  • Hiederer, R. & Köchy M. Global soil organic carbon estimates and the harmonized world soil database. EUR 25225EN (2012).

  • Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database v2, https://doi.org/10.6084/m9.figshare.7504448.v3 (2019).

  • Slessarev, E. W. et al. Water balance creates a threshold in soil pH at the global scale. Nature 540, 567–569 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zinke, P., Stangenberger, A., Post, W., Emanual, E. & Olson, J. WORLDWIDE ORGANIC SOIL CARBON AND NITROGEN DATA. Technical report, Oak Ridge National Laboratory, https://cdiac.ess-dive.lbl.gov/ndps/ndp018.html (2004).

  • Kowalczyk, E. A., Wang, Y. P. & Law, R. M. The CSIRO Atmosphere Biosphere Land Exchange (CABLE) model for use in climate models and as an offline model. CSIRO Mar. Atmos. Res. Pap. 13, 1–42 (2006).

    Google Scholar 

  • Houlton, B. Z., Wang, Y. P., Vitousek, P. M. & Field, C. B. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454, 327–330 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, C. et al. Nitrogen isotopic composition of plants and soil in an arid mountainous terrain: South slope versus north slope. Biogeosciences 15, 369–377 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Brenner, D., Amundson, R., Baisden, T., Kendall, C. & Harden, J. N variation with time in a California annual grassland ecosystem. Geochimica et. Cosmochimica Acta. 65, 4171–4186 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Xu, Y., He, J., Cheng, W., Xing, X. & Li, L. Natural 15N abundance in soils and plants in relation to N cycling in a rangeland in Inner Mongolia. J. Plant Ecol. 3, 201–207 (2010).

    Article 

    Google Scholar 

  • Inglett, P. W., Reddy, K. R., Newman, S. & Lorenzen, B. Increased soil stable nitrogen isotopic ratio following phosphorus enrichment: Historical patterns and tests of two hypotheses in a phosphorus-limited wetland. Oecologia 153, 99–109 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bissett, A. et al. Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaScience, 5, (2016).

  • Bauters, M. et al. Functional Composition of Tree Communities Changed Topsoil Properties in an Old Experimental Tropical Plantation. Ecosystems 20, 861–871 (2017).

    CAS 
    Article 

    Google Scholar 

  • Bauters, M. et al. Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation. Biogeosciences 14, 5313–5321 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bauters, M. et al. Contrasting nitrogen fluxes in African tropical forests of the Congo Basin. Ecol. Monograp. 89, 1–17 (2019).

  • Bauters, M. et al. Long-term recovery of the functional community assembly and carbon pools in an African tropical forest succession. Biotropica 51, 319–329 (2019).

    Article 

    Google Scholar 

  • Gallarotti, N. et al. In-depth analysis of N2O fluxes in tropical forest soils of the Congo Basin combining isotope and functional gene analysis. ISME J. (2021).

  • Barthel, M. et al. Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nat. Commun. 13, 1–8 (2022).

    Article 
    CAS 

    Google Scholar 

  • Baumgartner, S. et al. Stable isotope signatures of soil nitrogen on an environmental-geomorphic gradient within the Congo Basin. Soil 7, 83–94 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Chollet, F. Keras, Keras package for Python https://keras.io (2015).

  • IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”), online version created by S.J. Chalk. Blackwell Science Ltd, https://doi.org/10.1351/goldbook (2019).

  • Yu, L. et al. Constraining global N2O budgets with decadal trends of multiple isotope signatures. In preparation, (2022).

  • Machida, T., Nakazawa, T., Fujii, Y., Aoki, S. & Watanabe, O. Increase in the atmospheric nitrous oxide concentration during the last 250 years. Geophys. Res. Lett. 22, 2921–2924 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Rubino, M. et al. Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C-CO2 over the last 2000 years from Law Dome, Antarctica. Earth Syst. Sci. Data 11, 473–492 (2019).

    ADS 
    Article 

    Google Scholar 

  • Dorich, C. et al. Improving N2O emission estimates with the global N2O database. Curr. Opin. Environ. Sustainability 47, 13–20 (2020).

    Article 

    Google Scholar 

  • Mariotti, A. et al. Experimental-determination of Nitrogen Kinetic Isotope Fractionation – Some Principles – Illustration For the Denitrification and Nitrification Processes. Plant Soil 62, 413–430 (1981).

    CAS 
    Article 

    Google Scholar 

  • Möbius, J. Isotope fractionation during nitrogen remineralization (ammonification): Implications for nitrogen isotope biogeochemistry. Geochimica et. Cosmochimica Acta. 105, 422–432 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Stern, L., Baisden, W. T. & Amundson, R. Processes controlling the oxygen isotope ratio of soil CO2: Analytic and numerical modeling. Geochimica Et. Cosmochimica Acta. 63, 799–814 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Denk, T. R. A. et al. The nitrogen cycle: A review of isotope effects and isotope modeling approaches. Soil Biol. Biochem. 105, 121–137 (2017).

    CAS 
    Article 

    Google Scholar 

  • Rohe, L. et al. Comparing modified substrate induced respiration with selective inhibition (SIRIN) and N2O isotope approaches to estimate fungal contribution to denitrification in three arable soils under anoxic conditions. Biogeosciences, 18, 4629–4650, https://doi.org/10.5194/bg-18-4629-2021 (2021).

  • Wei, J. et al. N2O and NOx emissions by reactions of nitrite with soil organic matter of a Norway spruce forest. Biogeochemistry 132, 325–342 (2017).

    CAS 
    Article 

    Google Scholar 

  • Clough, T. J. et al. Influence of soil moisture on codenitrification fluxes from a urea-affected pasture soil. Sci. Rep. 7, 1–12 (2017).

    CAS 
    Article 

    Google Scholar 

  • Bai, E. & Houlton, B. Z. Coupled isotopic and process-based modeling of gaseous nitrogen losses from tropical rain forests. Glob. Biogeochemical Cycles 23, 1–10 (2009).

    Google Scholar 

  • Wen, Y. et al. Disentangling gross N2O production and consumption in soil. Sci. Rep. 6, 1–8 (2016).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Y., Liu, X. J., Fangmeier, A., Goulding, K. T. & Zhang, F. S. Nitrogen inputs and isotopes in precipitation in the North China Plain. Atmos. Environ. 42, 1436–1448 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Unkovich, M. Isotope discrimination provides new insight into biological nitrogen fixation. N. Phytologist 198, 643–646 (2013).

    CAS 
    Article 

    Google Scholar 

  • Beyn, F., Matthias, V., Aulinger, A. & Dähnke, K. Do N-isotopes in atmospheric nitrate deposition reflect air pollution levels? Atmos. Environ. 107, 281–288 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Vereecken, H. et al. Modeling Soil Processes: Review, Key challenges and New Perspectives. Vadose Zone J. 15, 1–57 (2016).

    CAS 

    Google Scholar 

  • Lamarque, J. F. et al. Multi-model mean nitrogen and sulfur deposition from the atmospheric chemistry and climate model intercomparison project (ACCMIP): Evaluation of historical and projected future changes. Atmos. Chem. Phys. 13, 7997–8018 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Schlesinger, W. H. On the fate of anthropogenic nitrogen. Proc. Natl Acad. Sci. USA 106, 203–208 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kim, D. G., Hernandez-Ramirez, G. & Giltrap, D. Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis. Agriculture, Ecosyst. Environ. 168, 53–65 (2013).

    CAS 
    Article 

    Google Scholar 

  • Scheer, C. et al. Addressing nitrous oxide: An often ignored climate and ozone threat. Tech. Rep. (2019).

  • Hu, H. W., Chen, D. & He, J. Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39, 729–749 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zaehle, S. Terrestrial nitrogen-carbon cycle interactions at the global scale. Philos. Trans. R. Soc. B: Biol. Sci. 368, 1–9 (2013).

  • Jones, P. et al. Hemispheric and large-scale land surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. 117, D05127 (2012).

    ADS 

    Google Scholar 

  • Olivier, J. & Berdowski, J. EDGAR 3.x by RIVM/TNO. In The Climate System (eds Berdowski, R. G. J. & Heij, B.) 33–77. (Swets and Zeitlinger Publishers, 2001).

  • Crippa, M. et al. High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Sci. Data 7, 1–17 (2020).

    Article 

    Google Scholar 

  • Bateman, A. S. & Kelly, S. D. Fertilizer nitrogen isotope signatures. Isotopes Environ. Health Stud. 43, 237–247 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Savard, M. M. et al. Nitrate isotopes unveil distinct seasonal N-sources and the critical role of crop residues in groundwater contamination. J. Hydrol. 381, 134–141 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bowman, K. P. & Cohen, P. J. Interhemispheric exchange by seasonal modulation of the Hadley circulation. J. Atmos. Sci. 54, 2045–2059 (1997).

    ADS 
    Article 

    Google Scholar 

  • Moseman-Valtierra, S. et al. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O. Atmos. Environ. 45, 4390–4397 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Brase, L., Bange, H. W., Lendt, R., Sanders, T. & Dähnke, K. High Resolution Measurements of Nitrous Oxide (N2O) in the Elbe Estuary. Front. Mar. Sci. 4, 1–11 (2017).

    Article 

    Google Scholar 

  • Wells, N. S. et al. Estuaries as Sources and Sinks of N2O Across a Land Use Gradient in Subtropical Australia. Glob. Biogeochemical Cycles 32, 877–894 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Rayner, P. Data Assimilation using an ensemble of models: A hierarchical approach. Atmos. Chem. Phys. 20, 1–13 (2020).

    Article 
    CAS 

    Google Scholar 

  • Met Office. Cartopy: a cartographic python library with a Matplotlib interface (https://scitools.org.uk/cartopy), (2015).


  • Source: Ecology - nature.com

    Helping cassava farmers by extending crop life

    Plant phenology changes and drivers on the Qinghai–Tibetan Plateau