in

Using metabarcoding and droplet digital PCR to investigate drivers of historical shifts in cyanobacteria from six contrasting lakes

  • Paerl, H. W. & Huisman, J. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 1, 27–37 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Paerl, H. W. & Paul, V. J. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46, 1349–1363 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Reissig, M., Trochine, C., Queimaliños, C., Balseiro, E. & Modenutti, B. Impact of fish introduction on planktonic food webs in lakes of the Patagonian Plateau. Biol. Conserv. 132, 437–447 (2006).

    Article 

    Google Scholar 

  • Britton, J. R., Davies, G. D. & Harrod, C. Trophic interactions and consequent impacts of the invasive fish Pseudorasbora parva in a native aquatic foodweb: a field investigation in the UK. Biol. Invasions 12, 1533–1542 (2010).

    Article 

    Google Scholar 

  • Beaulieu, M., Pick, F. & Gregory-Eaves, I. Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set. Limnol. Oceanogr. 58, 1736–1746 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14, 313–334 (2012).

    Article 
    CAS 

    Google Scholar 

  • Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management. (E & FN Spon, 1999).

  • Sukenik, A., Quesada, A. & Salmaso, N. Global expansion of toxic and non-toxic cyanobacteria: effect on ecosystem functioning. Biodivers. Conserv. 24, 889–908 (2015).

    Article 

    Google Scholar 

  • Ibelings, B. W., Bormans, M., Fastner, J. & Visser, P. M. CYANOCOST special issue on cyanobacterial blooms: synopsis—a critical review of the management options for their prevention, control and mitigation. Aquat. Ecol. 50, 595–605 (2016).

    CAS 
    Article 

    Google Scholar 

  • Paerl, H. W. Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life 4, 988–1012 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rastogi, R. P., Madamwar, D. & Incharoensakdi, A. Bloom dynamics of cyanobacteria and their toxins: environmental health impacts and mitigation strategies. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01254 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ewing, H. A. et al. “New” cyanobacterial blooms are not new: two centuries of lake production are related to ice cover and land use. Ecosphere 11, e03170 (2020).

    Article 

    Google Scholar 

  • McGlone, M. S. & Wilmshurst, J. M. Dating initial Maori environmental impact in New Zealand. Quat. Int. 59, 5–16 (1999).

    Article 

    Google Scholar 

  • Brooking, A. P. D. of H. T. & Brooking, T. The History of New Zealand. (Greenwood Publishing Group, 2004).

  • Wilmshurst, J. M., Anderson, A. J., Higham, T. F. G. & Worthy, T. H. Dating the late prehistoric dispersal of Polynesians to New Zealand using the commensal Pacific rat. PNAS 105, 7676–7680 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McGlone, M. S. The Polynesian settlement of New Zealand in relation to environmental and biotic changes. N. Z. J. Ecol. 12, 115–129 (1989).

    Google Scholar 

  • McGlone, M. S. Polynesian deforestation of New Zealand: a preliminary synthesis. Archaeol. Ocean. 18, 11–25 (1983).

    Article 

    Google Scholar 

  • McWethy, D. B. et al. Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement. PNAS 107, 21343–21348 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McWethy, D. B., Wilmshurst, J. M., Whitlock, C., Wood, J. R. & McGlone, M. S. A high-resolution chronology of rapid forest transitions following Polynesian arrival in New Zealand. PLoS ONE 9, e111328 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Star, P. New Zealand environmental history: a question of attitudes. Environ. Hist. Camb. 9, 463–475 (2003).

    Article 

    Google Scholar 

  • Clark, A. H. The Invasion of New Zealand by Plants, People, and Animals (Rutgers University Press, 1949).

    Google Scholar 

  • Wilmshurst, J. M. Human effects on the environment: European impact. Te Ara: The Encyclopedia of New Zealand https://teara.govt.nz/en/human-effects-on-the-environment/page-3 (2007).

  • Smol, J. P. The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index. Hydrobiologia 123, 199–208 (1985).

    Article 

    Google Scholar 

  • Rees, A. B. H., Cwynar, L. C. & Cranston, P. S. Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: a training set from Tasmania, Australia. J. Paleolimnol. 40, 1159–1178 (2008).

    ADS 
    Article 

    Google Scholar 

  • Epp, L. S., Stoof, K. R., Trauth, M. H. & Tiedemann, R. Historical genetics on a sediment core from a Kenyan lake: intraspecific genotype turnover in a tropical rotifer is related to past environmental changes. J. Paleolimnol. 43, 939–954 (2010).

    ADS 
    Article 

    Google Scholar 

  • Buchaca, T. et al. Rapid ecological shift following piscivorous fish introduction to increasingly eutrophic and warmer Lake Furnas (Azores Archipelago, Portugal): a paleoecological approach. Ecosystems 14, 458–477 (2011).

    CAS 
    Article 

    Google Scholar 

  • Cristescu, M. E. & Hebert, P. D. N. Uses and misuses of environmental DNA in biodiversity science and conservation. Annu. Rev. Ecol. Evol. Syst. 49, 209–230 (2018).

    Article 

    Google Scholar 

  • Giguet-Covex, C. et al. Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat. Commun. 5, 3211 (2014).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Alsos, I. G. et al. Plant DNA metabarcoding of lake sediments: how does it represent the contemporary vegetation. PLoS ONE 13, e0195403 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Nelson-Chorney, H. T. et al. Environmental DNA in lake sediment reveals biogeography of native genetic diversity. Front. Ecol. Environ. 17, 313–318 (2019).

    Google Scholar 

  • Capo, E. et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: overview and recommendations. Quaternary 4, 6 (2021).

    Article 

    Google Scholar 

  • Shokralla, S., Spall, J. L., Gibson, J. F. & Hajibabaei, M. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21, 1794–1805 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Thomsen, P. F. & Willerslev, E. Environmental DNA: an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).

    Article 

    Google Scholar 

  • Keeley, N., Wood, S. A. & Pochon, X. Development and preliminary validation of a multi-trophic metabarcoding biotic index for monitoring benthic organic enrichment. Ecol. Ind. 85, 1044–1057 (2018).

    CAS 
    Article 

    Google Scholar 

  • Monchamp, M.-E., Walser, J.-C., Pomati, F. & Spaak, P. Sedimentary DNA reveals cyanobacterial community diversity over 200 years in two perialpine lakes. Appl. Environ. Microbiol. 82, 6472–6482 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pal, S., Gregory-Eaves, I. & Pick, F. R. Temporal trends in cyanobacteria revealed through DNA and pigment analyses of temperate lake sediment cores. J. Paleolimnol. 54, 87–101 (2015).

    ADS 
    Article 

    Google Scholar 

  • Dodsworth, W. Temporal Trends in Cyanobacteria Through Paleo-Genetic Analyses. (Université d’Ottawa/University of Ottawa, 2020). https://doi.org/10.20381/ruor-24401.

  • Rinta-Kanto, J. M. et al. The diversity and distribution of toxigenic Microcystis spp. in present day and archived pelagic and sediment samples from Lake Erie. Harmful Algae 8, 385–394 (2009).

    CAS 
    Article 

    Google Scholar 

  • Zastepa, A. et al. Reconstructing a long-term record of microcystins from the analysis of lake sediments. Sci. Total Environ. 579, 893–901 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schallenberg, M. et al. Ecosystem services of lakes. In Ecosystem Services in New Zealand (ed. Dymond, J.) 23 (Manaaki Whenua Press, 2013).

    Google Scholar 

  • Ministry for the Environment & Ausseil, A.-G. Our freshwater 2020. www.mfe.govt.nz (2020).

  • Takiwa—Map Page. https://lernz.takiwa.co/map.

  • Leathwick, J. et al. Freshwater ecosystems of New Zealand (FENZ) geodatabase. Users guide. (2010).

  • Cochrane, L. Reconstructing Ecological Change, Catchment Disturbance, and Anthropogenic Impact over the last 3000 years at Lake Pounui, Wairarapa, New Zealand. (2017).

  • Burns, C. W. & Mitchell, S. F. Seasonal succession and vertical distribution of phytoplankton in Lake Hayes and Lake Johnson, South Island, New Zealand. N. Z. J. Mar. Freshw. Res. 8, 167–209 (1974).

    Article 

    Google Scholar 

  • Lawa. Land, Air, Water Aotearoa (LAWA) https://www.lawa.org.nz/ (2018).

  • Bunny, T., Perrie, A., Milne, J. & Keenan, L. Lake water quality in the Ruamāhanga Whaitua. 17 (2014).

  • McKinnon, M. Volcanic Plateau region: The lure of trout. Te Ara—The Encyclopedia of New Zealand https://teara.govt.nz/en/volcanic-plateau-region/page-8 (2015).

  • Burns, C. W. & Mitchell, S. F. Seasonal succession and vertical distribution of zooplankton in Lake Hayes and Lake Johnson. N. Z. J. Mar. Freshw. Res. 14, 189–204 (1980).

    Article 

    Google Scholar 

  • Schallenberg, M. & Schallenberg, L. Lake Hayes restoration and monitoring plan. 55 https://a234f952-dbf2-444e-983e-ef311d984ee7.filesusr.com/ugd/c1b10b_d2993ed023cd4bdbac7eef71a89c2de7.pdf (2017).

  • NIWA. NIWA https://niwa.co.nz/.

  • Mackereth, F. J. H. A portable core sampler for lake deposits. Limnol. Oceanogr. 3, 181–191 (1958).

    ADS 
    Article 

    Google Scholar 

  • Howarth, J. D., Fitzsimons, S. J., Norris, R. J. & Jacobsen, G. E. Lake sediments record cycles of sediment flux driven by large earthquakes on the Alpine fault, New Zealand. Geology 40, 1091–1094 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Trodahl, M. I., Rees, A. B. H., Newnham, R. M. & Vandergoes, M. J. Late Holocene geomorphic history of Lake Wairarapa, North Island, New Zealand. N. Z. J. Geol. Geophys. 59, 330–340 (2016).

    CAS 
    Article 

    Google Scholar 

  • Khan, S., Puddick, J., Burns, C. W., Closs, G. & Schallenberg, M. Palaeolimnological evaluation of historical nutrient and food web contributions to the eutrophication of two monomictic lakes. Submitted for Journal Publication (2022).

  • Rinta-Kanto, J. M. et al. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in Western Lake Erie using quantitative real-time PCR. Environ. Sci. Technol. 39, 4198–4205 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nübel, U., Garcia-Pichel, F. & Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327–3332 (1997).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

  • RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. (2020).

  • Wickham, H. et al. Welcome to the Tidyverse. J. Open Sour. Softw. 4, 1686 (2019).

    ADS 
    Article 

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

    MATH 
    Book 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).

    Article 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yilmaz, P. et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Glöckner, F. O. et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 261, 169–176 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • McMurdie, P. J. & Holmes, S. phyloseq: an R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–6. 2019. (2019).

  • Williams, P. A. & Cameron, E. K. Creating gardens: the diversity and progression of European plant introductions. In Biological Invasions in New Zealand Vol. 186 (eds Allen, R. B. & Lee, W. G.) 33–47 (Springer-Verlag, 2006).

    Chapter 

    Google Scholar 

  • Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00149 (2018).

    Article 

    Google Scholar 

  • Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 12, 35 (2011).

    Article 

    Google Scholar 

  • Juggins, S. rioja: analysis of quaternary science data. (2020).

  • de Vries, A. & Ripley, B. D. ggdendro: create dendrograms and tree diagrams using ‘ggplot2’. (2022).

  • Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  • Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).

    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • Soo, R. M. et al. An expanded genomic representation of the phylum Cyanobacteria. Genome Biol. Evol. 6, 1031–1045 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • MacKeigan, P. W. et al. Comparing microscopy and DNA metabarcoding techniques for identifying cyanobacteria assemblages across hundreds of lakes. Harmful Algae 113, 102187 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wood, S. A. et al. Trophic state and geographic gradients influence planktonic cyanobacterial diversity and distribution in New Zealand lakes. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw234 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Becker, S., Richl, P. & Ernst, A. Seasonal and habitat-related distribution pattern of Synechococcus genotypes in Lake Constance. FEMS Microbiol. Ecol. 62, 64–77 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sánchez-Baracaldo, P., Handley, B. A. & Hayes, P. K. Picocyanobacterial community structure of freshwater lakes and the Baltic Sea revealed by phylogenetic analyses and clade-specific quantitative PCR. Microbiology (Reading) 154, 3347–3357 (2008).

    Article 
    CAS 

    Google Scholar 

  • Pilon, S. et al. Contrasting histories of microcystin-producing cyanobacteria in two temperate lakes as inferred from quantitative sediment DNA analyses. Lake Reserv. Manag. 35, 102–117 (2019).

    CAS 
    Article 

    Google Scholar 

  • Queenstown’s Pioneering Beginnings. https://www.queenstownnz.co.nz/stories/post/queenstowns-pioneer-beginnings/ (2017).

  • Fish, G. R. A limnological study of four lakes near Rotorua. N. Z. J. Mar. Freshw. Res. 4, 165–194 (1970).

    Article 

    Google Scholar 

  • Lake Rotoehu—Lakes Water Quality Society. https://lakeswaterquality.co.nz/lake-rotoehu/.

  • Bay of Plenty Regional Council, Rotorua District Council, & Te Arawa Lakes Trust. Lake Rotoehu Action Plan. 61 http://www.rotorualakes.co.nz/vdb/document/76 (2007).

  • Hobbs, W. O. et al. Using a lake sediment record to infer the long-term history of cyanobacteria and the recent rise of an anatoxin producing Dolichospermum sp.. Harmful Algae 101, 101971 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • de la Escalera, G. M., Antoniades, D., Bonilla, S. & Piccini, C. Application of ancient DNA to the reconstruction of past microbial assemblages and for the detection of toxic cyanobacteria in subtropical freshwater ecosystems. Mol. Ecol. 23, 5791–5802 (2014).

    Article 
    CAS 

    Google Scholar 

  • Retrolens—Historical Imagery Resource. https://retrolens.co.nz/.

  • Strayer, D. L. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 55, 152–174 (2010).

    Article 

    Google Scholar 

  • Hall, S. R. & Mills, E. L. Exotic species in large lakes of the world. Aquat. Ecosyst. Health Manag. 3, 105–135 (2000).

    Article 

    Google Scholar 

  • Gehrke, P. C. & Harris, J. H. The role of fish in cyanobacterial blooms in Australia. Mar. Freshw. Res. 45, 905–915 (1994).

    Article 

    Google Scholar 

  • Burns, C. W. & Schallenberg, M. Impacts of nutrients and zooplankton on the microbial food web of an ultra-oligotrophic lake. J. Plankton Res. 20, 1501–1525 (1998).

    Article 

    Google Scholar 

  • Rowe, D. K. & Schallenberg, M. Food webs in lakes. In Freshwaters of New Zealand (ed. Harding, J. S.) 23 (Wellington, N.Z.: New Zealand Hydrological Society, 2004).

  • Gliwicz, Z. M. & Pijanowska, J. The role of predation in zooplankton succession. In Plankton Ecology: Succession in Plankton Communities (ed. Sommer, U.) 253–296 (Springer, 1989).

    Chapter 

    Google Scholar 

  • Vanni, M. J. & Findlay, D. L. Trophic cascades and phytoplankton community structure. Ecology 71, 921–937 (1990).

    Article 

    Google Scholar 

  • Smith, K. F. & Lester, P. J. Trophic interactions promote dominance by cyanobacteria (Anabaena spp.) in the pelagic zone of lower Karori reservoir, Wellington, New Zealand. N. Z. J. Mar. Freshw. Res. 41, 143–155 (2007).

    Article 

    Google Scholar 

  • Smith, K. F. & Lester, P. J. Cyanobacterial blooms appear to be driven by top-down rather than bottom-up effects in the Lower Karori Reservoir (Wellington, New Zealand). N. Z. J. Mar. Freshw. Res. 40, 53–63 (2006).

    CAS 
    Article 

    Google Scholar 

  • Caroppo, C. Ecology and biodiversity of picoplanktonic cyanobacteria in coastal and brackish environments. Biodivers. Conserv. 24, 949–971 (2015).

    Article 

    Google Scholar 

  • Pulina, S. et al. Picophytoplankton seasonal dynamics and interactions with environmental variables in three Mediterranean coastal lagoons. Estuaries Coasts 40, 469–478 (2017).

    CAS 
    Article 

    Google Scholar 

  • Callieri, C. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshw. Rev. 1, 1–28 (2008).

    Article 

    Google Scholar 

  • Keefer, D. K. Investigating landslides caused by earthquakes: a historical review. Surv. Geophys. 23, 473–510 (2002).

    ADS 
    Article 

    Google Scholar 

  • Fan, X. et al. Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts. Rev. Geophys. 57, 421–503 (2019).

    ADS 
    Article 

    Google Scholar 

  • Manighetti, I. et al. Repeated giant earthquakes on the Wairarapa fault, New Zealand, revealed by Lidar-based paleoseismology. Sci. Rep. 10, 2124 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McSaveney, E. Historic earthquakes: the 1942 Wairarapa earthquakes. Te Ara Encyclopedia of New Zealand https://teara.govt.nz/en/historic-earthquakes/page-9 (2006).

  • New Zealand’s environmental reporting series: our atmosphere and climate. (Ministry for the Environment & Stats NZ, 2020).

  • Beng, K. C. & Corlett, R. T. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodivers. Conserv. 29, 2089–2121 (2020).

    Article 

    Google Scholar 

  • Freeland, J. R. The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA. Genome https://doi.org/10.1139/gen-2016-0100 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Barnes, M. A. et al. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48, 1819–1827 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barnes, M. A. et al. Environmental conditions influence eDNA particle size distribution in aquatic systems. Environmental DNA https://doi.org/10.1002/edn3.160 (2020).

    Article 

    Google Scholar 

  • Corinaldesi, C., Beolchini, F. & Dell’anno, A. Damage and degradation rates of extracellular DNA in marine sediments: implications for the preservation of gene sequences. Mol. Ecol. 17, 3939–3951 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Eichmiller, J. J., Best, S. E. & Sorensen, P. W. Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environ. Sci. Technol. 50, 1859–1867 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92 (2015).

    Article 

    Google Scholar 

  • Seymour, M. et al. Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Commun. Biol. https://doi.org/10.1038/s42003-017-0005-3 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dommain, R. et al. The challenges of reconstructing tropical biodiversity with sedimentary ancient DNA: a 2200-year-long metagenomic record from Bwindi Impenetrable Forest, Uganda. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00218 (2020).

    Article 

    Google Scholar 

  • Jöhnk, K. D. et al. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Biol. 14, 495–512 (2008).

    ADS 
    Article 

    Google Scholar 

  • Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. PNAS 103, 12115–12120 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Structural diagnosis of benthic invertebrate communities in relation to salinity gradient in Baltic coastal lake ecosystems using biological trait analysis

    Sustainable management practices vary with farm size in US organic crop production