in

Deep-sea infauna with calcified exoskeletons imaged in situ using a new 3D acoustic coring system (A-core-2000)

  • Joos, F., Plattner, G. K., Stocker, T. F., Marchal, O. & Schmittner, A. Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284(5413), 464–467 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Smith, K. L. et al. Climate, carbon cycling, and deep-ocean ecosystems. Proc. Nat. Acad. Sci USA 106, 19211–19218 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ramirez-Llodra, E. et al. Man and the last great wilderness: Human impact on the deep sea. PLoS ONE 6, e22588 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Pham, C. K. et al. Marine litter distribution and density in European Seas, from the shelves to deep basins. PLoS ONE 9, e95839 (2014).

    ADS 
    Article 

    Google Scholar 

  • Angel, M. What is the deep sea? In Deep-sea fishes (eds Randall, D. & Farrell, A.) 1–41 (Academic Publishing, 1997).

    Google Scholar 

  • Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K. & Arbizu, P. M. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).

    Article 

    Google Scholar 

  • Thurber, A. R. et al. Ecosystem function and services provided by the deep sea. Biogeosciences 11, 3941–3963 (2014).

    ADS 
    Article 

    Google Scholar 

  • Solan, M. et al. Extinction and ecosystem function in the marine benthos. Science 306(5699), 1177–1180 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Danise, S., Twitchett, R. J., Little, C. T. & Clemence, M. E. The impact of global warming and anoxia on marine benthic community dynamics: An example from the Toarcian (Early Jurassic). PLoS ONE 8(2), e56255 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Nomaki, H. et al. In situ experimental evidences for responses of abyssal benthic biota to shifts in phytodetritus compositions linked to global climate change. Glob. Chang. Biol. 27, 6139–6155 (2021).

    Article 

    Google Scholar 

  • Viehman, H. A. & Zydlewski, G. B. Fish interactions with a commercial-scale tidal energy device in the natural environment. Estuaries Coast 38(1), 241–252 (2015).

    Article 

    Google Scholar 

  • Danovaro, R. et al. Implementing and innovating marine monitoring approaches for assessing marine environmental status. Front. Mar. Sci. 3, 213 (2016).

    Article 

    Google Scholar 

  • Mizuno, K. et al. An efficient coral survey method based on a large-scale 3-D structure model obtained by Speedy Sea Scanner and U-Net segmentation. Sci. Rep. 10(1), 12416. https://doi.org/10.1038/s41598-020-69400-5 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eleftheriou, A., & Moore, D. C. (2013). Macrofauna techniques. Methods for the study of marine benthos, 175–251.

  • Solan, M. et al. In situ quantification of bioturbation using time lapse fluorescent sediment profile imaging (f SPI), luminophore tracers and model simulation. Mar. Ecol. Prog. Ser. 271, 1–12 (2004).

    ADS 
    Article 

    Google Scholar 

  • Hale, R. et al. High-resolution computed tomography reconstructions of invertebrate burrow systems. Sci. Data 2(1), 1–5 (2015).

    Article 

    Google Scholar 

  • Plets, R. M. et al. The use of a high-resolution 3D Chirp sub-bottom profiler for the reconstruction of the shallow water archaeological site of the Grace Dieu (1439), River Hamble, UK. J. Archaeol. Sci. 36(2), 408–418 (2009).

    Article 

    Google Scholar 

  • Mizuno, K. et al. Automatic non-destructive three-dimensional acoustic coring system for in situ detection of aquatic plant root under the water bottom. Case Stud. Nondestruct. Test. Evaluat. 5, 1–8 (2016).

    CAS 
    Article 

    Google Scholar 

  • Suganuma, H., Mizuno, K. & Asada, A. Application of wavelet shrinkage to acoustic imaging of buried asari clams using high-frequency ultrasound. J. Appl. Phys. 57(7S1), 07LG08 (2018).

    Article 

    Google Scholar 

  • Dorgan, K. M. et al. Impacts of simulated infaunal activities on acoustic wave propagation in marine sediments. J. Acoust. Soc. Am. 147(2), 812–823 (2020).

    ADS 
    Article 

    Google Scholar 

  • Mizuno, K., Cristini, P., Komatitsch, D. & Capdeville, Y. Numerical and experimental study of wave propagation in water-saturated granular media using effective method theories and a full-wave numerical simulation. IEEE J. Ocean. Eng. 45(3), 772–785 (2020).

    ADS 
    Article 

    Google Scholar 

  • Schulze, I. et al. Laboratory measurements to image endobenthos and bioturbation with a high-frequency 3D seismic lander. Geosciences 11(12), 508 (2021).

    ADS 
    Article 

    Google Scholar 

  • Hashimoto, J. et al. Deep-sea communities dominated by the giant clam, Calyptogena soyoae, along the slope foot of Hatsushima Island, Sagami Bay, central Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 71(12), 179–192 (1989).

    Article 

    Google Scholar 

  • Fujikura, K., Hashimoto, J. & Okutani, T. Estimated population densities of megafauna in two chemosynthesisbased communities: A cold seep in Sagami Bay and a hydrothermal vent in the Okinawa Trough. Benthos. Res. 57(1), 21–30 (2002).

    Article 

    Google Scholar 

  • Childress, J. J. & Girguis, P. R. The metabolic demands of endosymbiotic chemoautotrophic metabolism on host physiological capacities. J. Exp. Biol. 214(2), 312–325 (2011).

    CAS 
    Article 

    Google Scholar 

  • Okuba, K. (2021). Basic study on sonar system development for exploring infaunal bivalves. Master thesis, GSFS, The University of Tokyo (in Japanese).

  • Stoll, R. D. & Bryan, G. M. Wave attenuation in saturated sediments. The J. Acoust. Soc. Am. 47(5B), 1440–1447 (1970).

    ADS 
    Article 

    Google Scholar 

  • Schwartz, L. & Plona, T. J. Ultrasonic propagation in close-packed disordered suspensions. J. Appl. Phys. 55(11), 3971–3977 (1984).

    ADS 
    Article 

    Google Scholar 

  • Seike, K., Shirai, K. & Murakami-Sugihara, N. Using tsunami deposits to determine the maximum depth of benthic burrowing. PLoS ONE 12(8), e0182753. https://doi.org/10.1371/journal.pone.0182753 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Using metabarcoding and droplet digital PCR to investigate drivers of historical shifts in cyanobacteria from six contrasting lakes

    Freshwater unionid mussels threatened by predation of Round Goby (Neogobius melanostomus)