in

Fossoriality in desert-adapted tenebrionid (Coleoptera) larvae

  • Matthews, E. G., Lawrence, J. F., Bouchard, P., Steiner, W. E. Jr. & Ślipiński, S. A. Tenebrionidae Latreille, 1802. In Handbook of Zoology. A Natural History of the Phyla of the Animal Kingdom. Vol. IV—Arthropoda: Insecta. Part 38 Coleoptera, Beetles. Vol. 2: Systematics (Part 2) (eds Leschen, R. A. B. et al.) 574–659 (Walter de Gruyter GmbH & Co, 2010).

    Google Scholar 

  • Kergoat, G. J. et al. Higher-level molecular phylogeny of darkling beetles (Coleoptera: Tenebrionidae). Syst. Entomol. 39, 486–499. https://doi.org/10.1111/syen.12065 (2014).

    Article 

    Google Scholar 

  • Bouchard, P. et al. Review of genus-group names in the family Tenebrionidae (Insecta, Coleoptera). Zookeys 26, 1–633. https://doi.org/10.3897/zookeys.1050.64217 (2021).

    Article 

    Google Scholar 

  • Matthews, E. G. & Bouchard, P. Tenebrionid Beetles of Australia 398 (Australian Biological Resources Study, 2008).

    Google Scholar 

  • Thomas, D. B. J. R. Patterns in the abundance of some tenebrionid beetles in the Mojave Desert. Environ. Entomol. 8, 568–657 (1979).

    Article 

    Google Scholar 

  • Seely, M. K. & Louw, G. N. First approximation of the effects of rainfall on the ecology and energetics of a Namib Desert dune ecosystem. J. Arid Environ. 3, 25–54 (1980).

    ADS 
    Article 

    Google Scholar 

  • Crawford, C. S. The community ecology of macroarthropod detritivores. In The Ecology of Desert Communities (ed. Polis, G. A.) 89–112 (The University of Arizona Press, 1991).

    Google Scholar 

  • Mordkovich, V. G. Species richness, population structure and functional significance of black-beetles (Coleoptera: Tenebrionidae) in steppes of Northern Asia. Russ. Entomol. J. 11, 57–68 (2002).

    Google Scholar 

  • Bartholomew, A. & El Moghrabi, J. Seasonal preference of darkling beetles (Tenebrionidae) for shrub vegetation due to high temperatures, not predation or food availability. J. Arid Environ. 156, 34–40 (2018).

    ADS 
    Article 

    Google Scholar 

  • Cheli, G. H., Bosco, T. & Flores, G. The role of Nyctelia dorsata Fairmaire, 1905 (Coleoptera: Tenebrionidae) on litter fragmentation processes and soil biogeochemical cycles in arid Patagonia. Ann. Zool. 72, 129–134. https://doi.org/10.3161/00034541ANZ2022.72.1.011 (2022).

    Article 

    Google Scholar 

  • Nørgaard, T. & Dacke, M. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles. Front. Zool. 7, 23. https://doi.org/10.1186/1742-9994-7-23 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Comanns, P. Passive water collection with the integument: Mechanisms and their biomimetic potential. J. Exp. Biol. 221, jeb153130. https://doi.org/10.1242/jeb.153130 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Doyen, J. T. Familial and subfamilial classification of the Tenebrionoidea (Coleoptera) and a revised generic classification of the Coniontini (Tentyriidae). Quest. Entomol. 8, 357–376 (1972).

    Google Scholar 

  • Schulze, L. The Tenebrionidae of Southern Africa. XLII. Description of the early stages of Carchares macer Pascoe and Herpiscus sommeri Solier with a discussion of some phylogenetic aspects arising from the incongruities of adult and larval systematics. Sci. Pap. Namib Desert Res. Stn. 53, 139–149 (1969).

    Google Scholar 

  • Kamiński, M. J. et al. Reevaluation of Blapimorpha and Opatrinae: Addressing a major phylogeny-classification gap in darkling beetles (Coleoptera: Tenebrionidae: Blaptinae). Syst. Entomol. 46, 140–156. https://doi.org/10.1111/syen.12453 (2021).

    Article 

    Google Scholar 

  • Skopin, N. G. [Larvae of the subfamily Pimeliinae (Coleoptera, Tenebrionidae)]. Lichinki podsemeystva Pimeliinae (Coleoptera, Tenebrionidae). Trudy Nauchno-Issledovatelskogo Instituta Zashchity Rastenii Kazakhstanskoy Akademii Selskokhozyastvennykh Nauk 7, 191–298 (1962).

    Google Scholar 

  • Skopin, N. G. Die Larven der Tenebrioniden des Tribus Pycnocerini (Coleoptera, Heteromera). Ann. Museé R. l’Afrique Centrale 127, 1–35 (1964).

    Google Scholar 

  • Iwan, D. & Bečvář, S. Description of the early stages of Anomalipus plebejus plebejulus (Coleoptera: Tenebrionidae) from Zimbabwe with notes on the classifcation of the Opatrinae. Eur. J. Entomol. 97, 403–412 (2000).

    Article 

    Google Scholar 

  • Koch, C. Monograph of the Tenebrionidae of southern Africa Vol I (Tentyriinae, Molurini Trachynotina: Somaticus Hope). Transvaal Mus. Mem. 7, 242 (1955).

    Google Scholar 

  • Kergoat, G. J. Cretaceous environmental changes led to high extinction rates in a hyperdiverse beetle family. BMC Evol. Biol. 14, 220. https://doi.org/10.1186/s12862-014-0220-1 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, A. D., Dornburg, R. & Wheeler, Q. D. Larvae of the genus Eleodes (Coleoptera, Tenebrionidae): Matrix-based descriptions, cladistic analysis, and key to late instars. Zookeys 415, 217–268 (2014).

    Article 

    Google Scholar 

  • Kamiński, M. J. et al. Immature stages of beetles representing the ‘Opatrinoid’ clade (Coleoptera: Tenebrionidae): An overview of current knowledge of the larval morphology and some resulting taxonomic notes on Blapstinina. Zoomorphology 138, 349–370. https://doi.org/10.1007/s00435-019-00443-7 (2019).

    Article 

    Google Scholar 

  • Rasa, O. A. E. Bechavioural adaptations to moisture as an environmental constraint in a nocturnal burrow-linhabiting Kalahari detritivore Parastizopus amraticpes Peringuey (Coleoptera: Tenebrionidae). Koedoe 37(1), 57–66 (1994).

    Article 

    Google Scholar 

  • Rasa, O. A. E. Ecological factors influencing burrow location, group size and mortality in a nocturnal fossorial Kalahari detritivore, Parastizopus armaticeps Peringuey (Coleoptera: Tenebrionidae). J. Arid Environ. 29, 353–365 (1995).

    ADS 
    Article 

    Google Scholar 

  • Fabricius, J. C. Supplementum Entomologia Systematica. (Impensis CG Proft, 1978).

  • Péringuey, L. Fourth contribution to the South African coleopterous fauna. Description of new Coleoptera in the South African Museum. Trans. S. Afr. Philos. Soc. 6, 95–136 (1892).

    Article 

    Google Scholar 

  • Endrody-Younga, S. A revision of the subtribe Gonopina (Coleoptera: Tenebrionidae: Opatrinae: Platynotini). Ann. Transvaal Mus. 37, 1–54 (2000).

    Google Scholar 

  • Kamiński, M. J. Notes on species diversity patterns in Stizopina (Coleoptera: Tenebrionidae), with description of a new genus from Nama Karoo. Ann. Zool. 65, 131–148. https://doi.org/10.3161/00034541ANZ2015.65.2.002 (2015).

    Article 

    Google Scholar 

  • Schulze, L. The Tenebrionidae of Southern Africa. XXXVIII. On the morphology of the larvae of some Stizopina (Coleoptera: Opatrini). Sci. Pap. Namib Desert Res. Stn. 19, 1–23 (1963).

    Google Scholar 

  • Schulze, L. A review of silk production and spinning activities in Arthropoda with special reference to spinning in Tenebrionid larvae (Coleoptera) and Brown, J. M. M.: A chromatographic analysis of Tenebrionid silk. Mem. Transvaal Mus. 51, 409–410 (1975).

    Google Scholar 

  • Rasa, O. A. E. & Endrödy-Younga, S. Intergeneric associations of stizopinid tenebrionids relative to their geographical distribution (Coleoptera: Tenebrionidae: Opatrini: Stitzopina). Afr. Entomol. 5, 231–239 (1997).

    Google Scholar 

  • Kamiński, M. J., Raś, M., Steiner, W. E. & Iwan, D. Immature stages of beetles representing the ‘Opatrinoid’ clade (Coleoptera: Tenebrionidae): An overview of current knowledge of the pupal morphology. Ann. Zool. 68, 825–836. https://doi.org/10.3161/00034541ANZ2018.68.4.006 (2018).

    Article 

    Google Scholar 

  • Doyen, J. T. The skeletal anatomy of Tenebrio molitor (Coleoptera: Tenebrionidae). Ann. Entomol. Soc. Am. 5, 103–150 (1966).

    Google Scholar 

  • Ohde, T., Yaginuma, T. & Niimi, T. Insect morphological diversification through the modification of wing serial homologs. Science 340, 495 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhu, J. Y., Yang, P., Zhang, Z., Wu, G. X. & Yang, B. Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani. PLoS ONE 8, e54411 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Raś, M., Iwan, D. & Kamiński, M. J. Tracheal system in post-embryonic development of holometabolous insects: A case study using mealworm beetle. J. Anat. 232, 997–1015. https://doi.org/10.1111/joa.12808 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kwon, G. T. et al. Mealworm larvae (Tenebrio molitor L.) exuviae as a novel prebiotic material for BALB/c mouse gut microbiota. Food Sci. Biotechnol. 29(4), 531–537. https://doi.org/10.1007/s10068-019-00699-1 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Machona, O., Chidzwondo, F. & Mangoyi, R. Tenebrio molitor: Possible source of polystyrene-degrading bacteria. BMC Biotechnol. 22, 2. https://doi.org/10.1186/s12896-021-00733-3 (2022).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jösting, E. A. Die Innervierung des Skelettmuskelsystems des Mehlwurms (Tenebrio molitor L., Larve). Zool. Jb. Anat. 67, 381–460 (1942).

    Google Scholar 

  • Burakowski, B., Mroczkowski, M. & Stefańska, J. Chrząszcze: Coleoptera. Cucujoidea, Część 3. Katalog Fauny Polski, XXIII, 14 (1987).

  • Schulze, L. The Tenebrionidae of southern Africa. XXXIII. Description of the larvae of Gonopus tibialis Fabricius and Gonopus agrestis Fahraeus (Gonopina, sensu Koch 1956). Cimbebasia 5, 1–12 (1962).

    Google Scholar 

  • Lawrence, J. F., Pollock, D. A. & Ślipiński, A. Tenebrionoidea. In Handbook of Zoology. A Natural History of the Phyla of the Animal kingdom, Vol. IV. Arthropoda: Insecta (eds Leschen, R. A. B. et al.) 487–659 (Walter de Gruyter, 2010).

    Google Scholar 

  • Lawrence, J. F. et al. Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Ann. Zool. 61(1), 1–217 (2011).

    Article 

    Google Scholar 

  • Beutel, R. G. & Friedrich, F. Comparative study of larvae of Tenebrionoidea (Coleoptera: Cucujiformia). Eur. J. Entomol. 102, 241–264 (2005).

    Article 

    Google Scholar 

  • Fredrich, F. & Beutel, R. G. The thorax of Zorotypus (Hexapoda, Zoraptera) and a new nomenclature for the musculature of Neoptera. Arthropod Struct. Dev. 37, 29–54 (2008).

    Article 

    Google Scholar 

  • Beutel, R. G., Friedrich, F., Yang, X.-K. & Ge, S.-Q. Insect Morphology and Phylogeny: A Textbook for Students of Entomology 515 (Walter de Gruyter, 2014).

    Google Scholar 

  • Aibekova, L. et al. The skeletomuscular system of the mesosoma of Formica rufa workers (Hymenoptera: Formicidae). Insect Syst. Divers. 6(2), 1–26. https://doi.org/10.1093/isd/ixac002 (2022).

    Article 

    Google Scholar 

  • Raś, M. Digging adaptations in psammophilous beetle larvae. Harvard Dataverse https://doi.org/10.7910/DVN/NNAETE (2022).

  • SkyScan. Method Notes, Skyscan 1172 Desktop Micro-CT (Skyscan, 2008).

    Google Scholar 

  • R Core Team. 2020. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020) https://www.R-project.org/.

  • Sokal, R. R. & Rohlf, F. J. Biometry 937 (W.H. Freeman, 2011).

    Google Scholar 

  • Cloudsley-Thompson, J. L. Terrestrial animals in dry heat: Arthropods. In Handbook of Physiology. Section 4: Adaptation to the Environment 414–436 (American Physiological Society, 1964).

    Google Scholar 

  • Cloudsley-Thompson, J. L. Adaptations of Arthropoda to arid environments. Annu. Rev. Entomol. 20, 261–283. https://doi.org/10.1146/annurev.en.20.010175.001401 (1975).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Draney, M. L. The subelytral cavity of desert tenebrionids. Fla. Entomol. 76, 539–549 (1993).

    Article 

    Google Scholar 

  • Duncan, F. D. The role of the subelytral cavity in water loss in the flightless dung beetle, Circellium bacchus (Coleoptera: Scarabaeinae). Eur. J. Entomol. 99(2), 253–258. https://doi.org/10.14411/eje.2002.034 (2002).

    Article 

    Google Scholar 

  • Endrödy-Younga, S. & Tschinkel, W. Estimation of population size and dispersal in Anomalipus mastodon Fåhraeus, 1870 (Coleoptera: Tenebrionidae: Platynotini). Ann. Transvaal Mus. 36(4), 21–30 (1993).

    Google Scholar 

  • Iwan, D. Insecta Coleoptera Tenebrionidae Pedinini Platynotina. Vol. 93 of Faune de Madagascar 178 (Editions Quae, 2010).

    Google Scholar 

  • Wallwork, J. A. Desert Soil Fauna 296 (Praeger Publication, 1982).

    Google Scholar 

  • Iwan, D. Oviviparity in tenebrionid beetles of the melanocratoid Platynotina (Coleoptera: Tenebrionidae: Platynotini) from Madagascar with notes on the viviparous beetles. Ann. Zool. 50, 15–25 (2000).

    Google Scholar 

  • Kaufmann, T. Observations on some factors which influence aggregated by Blaps sulcata in Israel. Ann. Entomol. Soc. Am. 59, 660–664 (1966).

    Article 

    Google Scholar 

  • Kiihnelt, G. On the biology and temperature accommodation of Lepidochora argentogrisea Koch. Sci. Pap. Namib Desert Res. Stn. 51, 121–122 (1969).

    Google Scholar 

  • Hamilton, W. J. Competition and thermoregulatory behaviour of the Namib desert tenebrionid beetle genus Cardiosis. Ecology 52, 810–822 (1971).

    Article 

    Google Scholar 

  • Watt, J. A revised subfamily classifcation of Tenebrionidae (Coleoptera). N. Z. J. Zool. 11, 381–452 (1974).

    Article 

    Google Scholar 

  • Burakowski, B. Laboratory methods for rearing soil beetles (Coleoptera). Memorab. Zool. 46, 1–66 (1993).

    Google Scholar 

  • De Block, M. & Stoks, R. Fitness effects from egg to reproduction: Bridging the life history transition. Ecology 86, 185–197 (2005).

    Article 

    Google Scholar 

  • Pechenik, J. A. Larval experience and latent effects: Metamorphosis is not a new beginning. Integr. Comp. Biol. 46, 323–333 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Doyen, J. T. Reconstitution of Coelometopini, Tenebrionini and related tribes of America north of Colombia (Coleoptera: Tenebrionidae). J. N. Y. Entomol. Soc. 97, 277–304 (1989).

    Google Scholar 

  • St. George, R. A. Studies on the larvae on North American beetles of the subfamily Tenebrioninae with a description of the larva and pupa of Merinus laevis (Olivier). Proc. U.S. Natl. Mus. 65, 1–22. https://doi.org/10.5479/si.00963801.65-2514.1 (1924).

    Article 

    Google Scholar 

  • Purchart, L. & Nabozhenko, M. V. First description of larva and pupa of the genus Deretus (Coleoptera: Tenebrionidae) with key to the larvae of the tribe Helopini. Acta Entomol. Musei Natl. Pragae 52, 295–302 (2012).

    Google Scholar 

  • Steiner, W. Larvae and pupae of two North American darkling beetles (Coleoptera, Tenebrionidae, Stenochiinae), Glyptotus cribratus LeConte and Cibdelis blaschkei Mannerheim, with notes on ecological and behavioural similarities. ZooKeys 415, 311–327. https://doi.org/10.3897/zookeys.415.6891 (2014).

    Article 

    Google Scholar 

  • Wagner, G. & Gosik, R. Comparative morphology of immature stages of two sympatric Tenebrionidae species, with comments on their biology. Zootaxa 4111, 201–222 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Development of microsatellites markers for the deep coral Madracis myriaster (Pocilloporidae: Anthozoa)

    Proximity to small-scale inland and coastal fisheries is associated with improved income and food security