in

A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia

  • Lee, J.-W. & McKibbin, W. J. Globalization and disease: the case of SARS. Asian Economic Pap. 3, 113–131 (2004).

    Article 

    Google Scholar 

  • Cutler, D. M. & Summers, L. H. The COVID-19 pandemic and the $16 trillion virus. JAMA 324, 1495–1496 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Peiris, J. S. M., Guan, Y. & Yuen, K. Y. Severe acute respiratory syndrome. Nat. Med. 10, S88–S97 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Raj, V. S., Osterhaus, A. D. M. E., Fouchier, R. A. M. & Haagmans, B. L. MERS: emergence of a novel human coronavirus. Curr. Opin. Virol. 5, 58–62 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhou, P. et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556, 255–258 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Zhou, L. et al. The re-emerging of SADS-CoV infection in pig herds in Southern China. Transbound. Emerg. Dis. 66, 2180–2183 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Daszak, P., Keusch, G. T., Phelan, A. L., Johnson, C. K. & Osterholm, M. T. Infectious disease threats: a rebound to resilience. Health Aff. 40, 204–211 (2021).

    Article 

    Google Scholar 

  • Anthony, S. J. et al. Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. mBio 8, e00373-17 (2017).

  • Li, W. D. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Wang, L. F. & Eaton, B. T. In Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission (eds J. E. Childs, J. S. Mackenzie, & J. A. Richt) 325–344 (Springer Berlin Heidelberg, 2007).

  • Dudas, G., Carvalho, L. M., Rambaut, A. & Bedford, T. MERS-CoV spillover at the camel-human interface. eLife 7, e31257 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Menachery, V. D. et al. SARS-like WIV1-CoV poised for human emergence. Proc. Natl Acad. Sci. USA 113, 3048–3053 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Li, H. et al. Human-animal interactions and bat coronavirus spillover potential among rural residents in Southern China. Biosaf. Health 1, 84–90 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, N. et al. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virologica Sin. 33, 104–107 (2018).

    Article 

    Google Scholar 

  • Wasik, B. R. et al. Onward transmission of viruses: how do viruses emerge to cause epidemics after spillover? Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 374, 20190017 (2019).

    CAS 
    Article 

    Google Scholar 

  • Parrish, C. R. et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 72, 457–470 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lloyd-Smith, J. O. et al. Epidemic dynamics at the human-animal interface. Science 326, 1362–1367 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Gray, G. C., Robie, E. R., Studstill, C. J. & Nunn, C. L. Mitigating future respiratory virus pandemics: new threats and approaches to consider. Viruses 13, 637 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Latinne, A. et al. Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 11, 4235 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • McFarlane, R., Sleigh, A. & McMichael, T. Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian-Australasian region. EcoHealth 9, 24–35 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLOS Pathog. 13, e1006698 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • IUCN. The IUCN Red List of Threatened Species. Version 2021-1, https://www.iucnredlist.org (2021).

  • Ruiz-Aravena, M. et al. Ecology, evolution and spillover of coronaviruses from bats. Nat. Rev. Microbiol. 20, 299–314 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Coker, R. J., Hunter, B. M., Rudge, J. W., Liverani, M. & Hanvoravongchai, P. Emerging infectious diseases in southeast Asia: regional challenges to control. Lancet 377, 599–609 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Horby, P. W., Pfeiffer, D. & Oshitani, H. Prospects for emerging infections in East and Southeast Asia 10 years after severe acute respiratory syndrome. Emerg. Infect. Dis. 19, 853–860 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wacharapluesadee, S. et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat. Commun. 12, 972 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Rulli, M. C., D’Odorico, P., Galli, N. & Hayman, D. T. S. Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nat. Food 2, 409–416 (2021).

    CAS 
    Article 

    Google Scholar 

  • Delaune, D. et al. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Nat. Commun. 12, 6563 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Zhou, H. et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell 184, 4380–4391 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • World Health Organization. WHO-convened global study of origins of SARS-CoV-2: China Part. (2021).

  • Holmes, E. C. et al. The origins of SARS-CoV-2: a critical review. Cell 184, 4848–4856 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brooks, T. M. et al. Measuring terrestrial Area of Habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Hosseini, P. R. et al. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160129 (2017).

    Article 

    Google Scholar 

  • Dobson, A. P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Petrovan, S. O. et al. Post COVID-19: a solution scan of options for preventing future zoonotic epidemics. Biol. Rev. 96, 2694–2715 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Roche, B. et al. Was the COVID-19 pandemic avoidable? A call for a “solution-oriented” approach in pathogen evolutionary ecology to prevent future outbreaks. Ecol. Lett. 23, 1557–1560 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Naguib, M. M., Ellström, P., Järhult, J. D., Lundkvist, Å. & Olsen, B. Towards pandemic preparedness beyond COVID-19. Lancet Microbe 1, e185–e186 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Muylaert, R. L. et al. Present and future distribution of bat hosts of sarbecoviruses: implications for conservation and public health. Proc. Roy. Soc. B., 289, 20220397 (2022).

  • Carroll, D. et al. The global virome project. Science 359, 872–874 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr. Biol. 30, 2196–2203.e2193 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, L.-L. et al. A novel SARS-CoV-2 related coronavirus with complex recombination isolated from bats in Yunnan province, China. Emerg. Microbes Infect. 10, 1683–1690 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pormohammad, A. et al. Comparison of confirmed COVID-19 with SARS and MERS cases – Clinical characteristics, laboratory findings, radiographic signs and outcomes: A systematic review and meta-analysis. Rev. Med. Virol. 30, e2112 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brehm, T. T. et al. Comparison of clinical characteristics and disease outcome of COVID-19 and seasonal influenza. Sci. Rep. 11, 5803 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Wolfe, N. D. et al. Emergence of unique primate T-lymphotropic viruses among central African bushmeat hunters. Proc. Natl Acad. Sci. USA 102, 7994–7999 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Nikolay, B. et al. Transmission of Nipah virus—14 Years of investigations in Bangladesh. N. Engl. J. Med. 380, 1804–1814 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Byrne, A. W. et al. Inferred duration of infectious period of SARS-CoV-2: rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases. BMJ Open 10, e039856 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wolfe, N. D. et al. Naturally acquired simian retrovirus infections in central African hunters. Lancet 363, 932–937 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Mildenstein, T., Tanshi, I. & Racey, P. A. Exploitation of bats for bushmeat and medicine. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) Ch. 12, 325–375 (Springer International Publishing, 2016).

  • Low, M.-R. et al. Bane or blessing? Reviewing cultural values of bats across the Asia-Pacific region. J. Ethnobiol. 41, 18–34 (2021).

    Article 

    Google Scholar 

  • Kingston, T. Cute, creepy, or crispy—How values, attitudes, and norms shape human behavior toward bats. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) 571–595 (Springer International Publishing, 2016).

  • Li, H. et al. Knowledge, attitude, and practice regarding zoonotic risk in wildlife trade, Southern China. EcoHealth 18, 95–106 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jung, K. & Threlfall, C. G. Urbanisation and its effects on bats—A global meta-analysis. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) Ch. 2, 13–33 (Springer International Publishing, 2016).

  • Latinne, A. et al. Characterizing and quantifying the wildlife trade network in Sulawesi, Indonesia. Glob. Ecol. Conserv. 21, e00887 (2020).

    Article 

    Google Scholar 

  • Huong, N. Q. et al. Coronavirus testing indicates transmission risk increases along wildlife supply chains for human consumption in Viet Nam, 2013–2014. PLOS ONE 15, e0237129 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Virachith, S. et al. Low seroprevalence of COVID-19 in Lao PDR, late 2020. Lancet Regional Health – West. Pac. 13, 100197 (2021).

    Article 

    Google Scholar 

  • Letko, M., Seifert, S. N., Olival, K. J., Plowright, R. K. & Munster, V. J. Bat-borne virus diversity, spillover and emergence. Nat. Rev. Microbiol. 18, 461–471 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Swadling, L. et al. Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. Nature 601, 110–117 (2022).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Liu, K. et al. Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species. Cell 184, 3438–3451.e3410 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Le Bert, N. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457–462 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Philavong, C. et al. Perception of health risks in Lao market vendors. Zoonoses Public Health 67, 796–804 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Carlson, C. J. et al. The future of zoonotic risk prediction. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20200358 (2021).

    CAS 
    Article 

    Google Scholar 

  • Bell, D., Roberton, S. & Hunter, P. R. Animal origins of SARS coronavirus: possible links with the international trade in small carnivores. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 359, 1107–1114 (2004).

    Article 

    Google Scholar 

  • He, J. F. et al. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303, 1666–1669 (2004).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Tu, C. et al. Antibodies to SARS-Coronavirus in Civets. Emerg. Infect. Dis. 10, 2244–2248 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China. Science 302, 276–278 (2003).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Freuling, C. et al. Susceptibility of raccoon dogs for experimental SARS-CoV-2 infection. Emerg. Infect. Dis. 26, 2982–2985 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • OIE-World Organisation for Animal Health. Infection with SARS-CoV-2 in animals. https://www.oie.int/app/uploads/2021/11/en-factsheet-sars-cov-2-20211025.pdf (2021).

  • Oreshkova, N. et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance 25, 2001005 (2020).

    PubMed Central 
    Article 

    Google Scholar 

  • Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172–177 (2021).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Daszak, P. et al. Workshop Report on Biodiversity and Pandemics of the Intergovernmental Platform on Biodiversity and Ecosystem Services. (Bonn, Germany, 2020).

  • Chinese Academy of Engineering. Report on sustainable development strategy of China’s wildlife farming industry. (2017).

  • Becker, D. J. et al. Optimising predictive models to prioritise viral discovery in zoonotic reservoirs. The Lancet Microbe, https://doi.org/10.1016/S2666-5247(21)00245-7 (2022).

  • Wacharapluesadee, S. et al. Longitudinal study of age-specific pattern of coronavirus infection in Lyle’s flying fox (Pteropus lylei) in Thailand. Virol. J. 15, 38 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Luo, Y. et al. Longitudinal surveillance of Betacoronaviruses in fruit bats in Yunnan Province, China during 2009–2016. Virologica Sin. 33, 87–95 (2018).

    CAS 
    Article 

    Google Scholar 

  • Maganga, G. D. et al. Genetic diversity and ecology of coronaviruses hosted by cave-dwelling bats in Gabon. Sci. Rep. 10, 7314 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Epstein, J. H. et al. Nipah virus dynamics in bats and implications for spillover to humans. Proc. Natl Acad. Sci. USA 117, 29190 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Thompson, C. W. et al. Preserve a voucher specimen! The critical need for integrating natural history collections in infectious disease studies. mBio 12, e02698–02620 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Phelps, K. L. et al. Bat research networks and viral surveillance: gaps and opportunities in Western Asia. Viruses 11, 240 (2019).

    PubMed Central 
    Article 

    Google Scholar 

  • Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Robertson, K. et al. Rabies-related knowledge and practices among persons at risk of bat exposures in Thailand. Plos Negl. Trop. Dis. 5, e1054 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wacharapluesadee, S. et al. Group C Betacoronavirus in bat guano fertilizer, Thailand. Emerg. Infect. Dis. 19, 1349–1352 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Suwannarong, K. et al. Risk factors for bat contact and consumption behaviors in Thailand; a quantitative study. BMC Public Health 20, 841 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Valitutto, M. T. et al. Detection of novel coronaviruses in bats in Myanmar. PLoS ONE 15, e0230802 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Phelps, K., Jose, R., Labonite, M. & Kingston, T. Assemblage and species threshold responses to environmental and disturbance gradients shape bat diversity in disturbed cave landscapes. Diversity 10, 55 (2018).

    Article 

    Google Scholar 

  • Quibod, M. N. R. M. et al. Diversity and threats to cave-dwelling bats in a small island in the southern Philippines. J. Asia-Pac. Biodivers. 12, 481–487 (2019).

    Article 

    Google Scholar 

  • Furey, N. M. & Racey, P. A. Conservation ecology of cave bats. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds C. C. Voigt & T. Kingston) 463–500 (Springer International Publishing, 2016).

  • Herkt, K. M. B., Skidmore, A. K. & Fahr, J. Macroecological conclusions based on IUCN expert maps: a call for caution. Glob. Ecol. Biogeogr. 26, 930–941 (2017).

    Article 

    Google Scholar 

  • Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7, 256 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jung, M. et al. A global map of terrestrial habitat types (Version 001), https://doi.org/10.5281/zenodo.3666246 (2020).

  • Faust, C. L. et al. Null expectations for disease dynamics in shrinking habitat: dilution or amplification. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160173 (2017).

    Article 

    Google Scholar 

  • Redding, D. W., Moses, L. M., Cunningham, A. A., Wood, J. & Jones, K. E. Environmental-mechanistic modelling of the impact of global change on human zoonotic disease emergence: a case study of Lassa fever. Methods Ecol. Evol. 7, 646–655 (2016).

    Article 

    Google Scholar 

  • Hassell, J. M. et al. Towards an ecosystem model of infectious disease. Nat. Ecol. Evol. 5, 907–918 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Winter, D. J. rentrez: An R package for the NCBI eUtils API. R. J. 9, 520–526 (2017).

    Article 

    Google Scholar 

  • South, A. rworldmap: A New R package for Mapping Global Data. R. J. 3, 35–43 (2011).

    Article 

    Google Scholar 

  • Olival, K. J. et al. Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: a case study of bats. PLOS Pathog. 16, e1008758 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Anthony, S. J. et al. Global patterns in coronavirus diversity. Virus Evolution 3, vex012 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Murakami, S. et al. Detection and characterization of Bat Sarbecovirus phylogenetically related to SARS-CoV-2, Japan. Emerg. Infect. Dis. 26, 3025–3029 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang, L. et al. Multilocus phylogeny and species delimitation within the philippinensis group (Chiroptera: Rhinolophidae). Zoologica Scr. 47, 655–672 (2018).

    Article 

    Google Scholar 

  • Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World. Vol. 9. Bats. (Lynx Edicions, 2019).

  • Srinivasulu, B. & Srinivasulu, C. In plain sight: Bacular and noseleaf morphology supports distinct specific status of Roundleaf Bats Hipposideros pomona Andersen, 1918 and Hipposideros gentilis Andersen, 1918 (Chiroptera: Hipposideridae). J. Threatened Taxa 10, 12018–12026 (2018).

    Article 

    Google Scholar 

  • Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos. Trans. R. Soc. B: Biol. Sci. 366, 2633–2641 (2011).

    Article 

    Google Scholar 

  • IUCN. Habitats Classification Scheme (Version 3.1), https://www.iucnredlist.org/resources/habitat-classification-scheme (2021).

  • Williams, P. & Fong, Y. T. World Map of Carbonate Rock Outcrops v3.0 (ed The University of Auckland) (2010).

  • Ross, N. fasterize: Fast Polygon to Raster Conversion. R package version 1.0.3 (2020).

  • Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.4-5. (2020).

  • Chamberlain, S. & Boettiger, C. R Python, and Ruby clients for GBIF species occurrence data. PeerJ Preprints 5, https://doi.org/10.7287/peerj.preprints.3304v1 (2017).

  • Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.6.0 (2022).

  • GBIF.org. GBIF Occurrence Download, https://doi.org/10.15468/dl.8w26d8 (2021).

  • Feng, X. et al. A checklist for maximizing reproducibility of ecological niche models. Nat. Ecol. Evol. 3, 1382–1395 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).

    Article 

    Google Scholar 

  • WorldPop. Unconstrained global mosaic 2020 (1km resolution), https://doi.org/10.5258/SOTON/WP00647 (2018).

  • Greenberg, J. A. & Mattiuzzi, M. gdalUtils: Wrappers for the Geospatial Data Abstraction Library (GDAL) Utilities. R package version 2.0.3.2. (2020).

  • Carnell, R. lhs: Latin Hypercube Samples. R package version 1.1.1. (2020).

  • Signorell, A. et al. DescTools: Tools for Descriptive Statistics v. 0.99.41 (2021).

  • Delignette-Muller, M. L. & Dutang, C. fitdistrplus: an R Package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).

    Article 

    Google Scholar 

  • Tan, C. W. et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction. Nat. Biotechnol. 38, 1073–1078 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tang, F. et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J. Immunol. 186, 7264 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sobol, I. M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Computers Simul. 55, 271–280 (2001).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Iooss, B., Da Veiga, S., Janon, A. & Pujol, G. sensitivity: Global Sensitivity Analysis of Model Outputs. R package version 1.25.0. (2021).

  • Monod, H., Naud, C. & Makowski, D. Uncertainty and sensitivity analysis for crop models. In Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications (eds Wallach, D., Makowski, D. & Jones, J.) (Elsevier Science, 2006).

  • Janon, A., Klein, T., Lagnoux, A., Nodet, M. & Prieur, C. Asymptotic normality and efficiency of two Sobol index estimators. ESAIM: Probab. Stat. 18, 342–364 (2014).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Distribution model transferability for a wide-ranging species, the Gray Wolf

    New J-WAFS-led project combats food insecurity