in

Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas

  • Roberson, L. A., Watson, R. A. & Klein, C. J. Over 90 endangered fish and invertebrates are caught in industrial fisheries. Nat. Commun. 11, 1–8 (2020).

    Article 
    CAS 

    Google Scholar 

  • Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dulvy, N. K. et al. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31, 1–15 (2021).

    Article 
    CAS 

    Google Scholar 

  • MacNeil, M. A. et al. Global status and conservation potential of reef sharks. Nature 583, 801–806 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dent, F. & Clarke, S. State of the global market for shark products. FAO Fish. Aquac. Tech. Pap. No. 590. 187 (2015).

  • FAO. 2008. The State of World Fisheries and Aquaculture. Food and Agriculture Organization of the United Nations, Rome (2008).

  • Davidson, L. N. K., Krawchuk, M. A. & Dulvy, N. K. Why have global shark and ray landings declined: improved management or over fishing? Fish Fish 17, 438–458 (2016).

    Article 

    Google Scholar 

  • Clarke, S. C. et al. Global estimates of shark catches using trade records from commercial markets. Ecol. Lett. 9, 1115–1126 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Dulvy, N. K. et al. Extinction risk and conservation of the world’ s sharks and rays. Elife 3, 1–35 (2014).

    Article 

    Google Scholar 

  • FAO. The State of World Fisheries and Aquaculture. Sustainability in action. Rome https://doi.org/10.4060/ca9229en (2020).

  • Smith, H. et al. Ecology and the science of small-scale fisheries: A synthetic review of research effort for the Anthropocene. Biol. Conserv. 254, 108895 (2021).

    Article 

    Google Scholar 

  • Worm, B. et al. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40, 194–204 (2013).

    Article 

    Google Scholar 

  • Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature 572, 461–466 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Leurs, G. et al. Industrial fishing near West African marine protected areas and its potential effects on mobile marine predators. Fron. Mar. Sci. 8, 1–13 (2021).

    ADS 

    Google Scholar 

  • White, W. T. et al. Shark longline fishery of Papua New Guinea: Size and species composition and spatial variation of the catches. Mar. Freshw. Res. 71, 662–669 (2020).

    Article 

    Google Scholar 

  • Jacquet, J. & Pauly, D. Funding priorities: Big barriers to small-scale fisheries. Conserv. Biol. 22, 832–835 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Moore, J. E. et al. An interview-based approach to assess marine mammal and sea turtle captures in artisanal fisheries. Biol. Conserv. 143, 795–805 (2010).

    Article 

    Google Scholar 

  • Soykan, C. U. et al. Why study bycatch? An introduction to the Theme Section on fisheries bycatch. Endanger. Species Res. 5, 91–102 (2008).

    Article 

    Google Scholar 

  • Haque, A. B. et al. Socio-ecological approach on the fishing and trade of rhino rays (Elasmobranchii: Rhinopristiformes) for their biological conservation in the Bay of Bengal, Bangladesh. Ocean Coast. Manag. 210, 105690 (2021).

    Article 

    Google Scholar 

  • Barausse, A. et al. The role of fisheries and the environment in driving the decline of elasmobranchs in the nor-thern Adriatic Sea. ICES J. Mar. Sci. 71, 1593–1603 (2014).

    Article 

    Google Scholar 

  • Pérez-Jiménez, J. C. & Mendez-Loeza, I. The small-scale shark fisheries in the southern Gulf of Mexico: Understanding their heterogeneity to improve their management. Fish. Res. 172, 96–104 (2015).

    Article 

    Google Scholar 

  • Saidi, B., Enajjar, S. & Bradai, M. N. Elasmobranch captures in shrimps trammel net fishery off the Gulf of Gabès (Southern Tunisia, Mediterranean Sea). J. Appl. Ichthyol. 32, 421–426 (2016).

    Article 

    Google Scholar 

  • Vögler, R., González, C. & Segura, A. M. Spatio-temporal dynamics of the fish community associated with artisanal fisheries activities within a key marine protected area of the Southwest Atlantic (Uruguay). Ocean Coast. Manag. 190, 105175 (2020).

  • Dulvy, N. K. et al. Challenges and priorities in Shark and Ray conservation. Curr. Biol. 27, R565–R572 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Davidson, L. N. K. & Dulvy, N. K. Global marine protected areas to prevent extinctions. Nat. Ecol. Evol. 1, 1–6 (2017).

    Article 

    Google Scholar 

  • Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Giakoumi, S. et al. Ecological effects of full and partial protection in the crowded Mediterranean Sea: A regional meta-analysis. Sci. Rep. 7, 1–12 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Grorud-Colvert, K. et al. The MPA Guide: A framework to achieve global goals for the ocean. Science 373, 6560 (2021).

    Article 
    CAS 

    Google Scholar 

  • Di Franco, A. et al. Five key attributes can increase marine protected areas performance for small-scale fisheries management. Sci. Rep. 6, 38135 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Ban, N. C., Kushneryk, K., Falk, J., Vachon, A. & Sleigh, L. Improving compliance of recreational fishers with Rockfish Conservation Areas: community–academic partnership to achieve and evaluate conservation. ICES J. Mar. Sci. 77, 2308–2318 (2019).

  • Di Lorenzo, M., Guidetti, P., Di Franco, A., Calò, A. & Claudet, J. Assessing spillover from marine protected areas and its drivers: A meta-analytical approach. Fish Fish. 15, 1–10 (2020).

  • Belharet, M. et al. Extending full protection inside existing marine protected areas, or reducing fishing effort outside, can reconcile conservation and fisheries goals. J. Appl. Ecol. 57, 1948–1957 (2020).

    Article 

    Google Scholar 

  • McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 247–254 (2015).

    CAS 
    Article 

    Google Scholar 

  • Di Franco, A. et al. Linking home ranges to protected area size: The case study of the Mediterranean Sea. Biol. Conserv. 221, 175–181 (2018).

  • MacKeracher, T., Diedrich, A. & Simpfendorfer, C. A. Sharks, rays and marine protected areas: A critical evaluation of current perspectives. Fish Fish 20, 255–267 (2019).

    Article 

    Google Scholar 

  • Ward-Paige, C. A., Keith, D. M., Worm, B. & Lotze, H. K. Recovery potential and conservation options for elasmobranchs. J. Fish. Biol. 80, 1844–1869 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. MEPS 384, 33–46 (2009).

    ADS 
    Article 

    Google Scholar 

  • O’Leary, B. C. et al. Addressing criticisms of large-scale marine protected areas. Bioscience 68, 359–370 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Collins, C. et al. Understanding persistent non-compliance in a remote, large-scale marine protected area. Front. Mar. Sci. 8, 1–13 (2021).

    ADS 
    Article 

    Google Scholar 

  • White, T. D. et al. Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71 (2017).

    Article 

    Google Scholar 

  • Speed, C. W., Cappo, M. & Meekan, M. G. Evidence for rapid recovery of shark populations within a coral reef marine protected area. Biol. Conserv. 220, 308–319 (2018).

    Article 

    Google Scholar 

  • Escalle, L. et al. Restricted movements and mangrove dependency of the nervous shark Carcharhinus cautus in nearshore coastal waters. J. Fish. Biol. 87, 323–341 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • O’Leary, B. C. et al. Effective coverage targets for ocean protection. Conserv. Lett. 9, 398–404 (2016).

    Article 

    Google Scholar 

  • Guidetti, P., Danovaro, R., Bottaro, M. & Ciccolella, A. Marine protected areas and endangered shark conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 2671–2672 (2021).

    Article 

    Google Scholar 

  • Lubchenco, J. & Grorud-Colvert, K. Making waves: The science and politics of ocean protection. Science 350, 382–383 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zupan, M. et al. Marine partially protected areas: drivers of ecological effectiveness. Front. Ecol. Environ. 16, 381–387 (2018).

    Article 

    Google Scholar 

  • Dulvy, N. K., Allen, D. J., Ralph, G. M. & Walls, R. H. L. The Conservation Status of Sharks, Rays, and Chimaeras in the Mediterranean Sea. IUCN, Malaga, Spain. pp. 236 (2016).

  • Morales-Muñiz, A. & Roselló, E. 20,000 years of fishing in the Strait: archaeological fish and shellfish assemblages from southern Iberia. In Human Impacts on Ancient Marine Ecysosytems: a Global Perspective (eds Torben, R. C. & Erlandson, J. M.), pp. 243–278 (University of California Press, Berkeley, 2008).

  • Coll, M. et al. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5, e11842 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Cashion, M. S., Bailly, N. & Pauly, D. Official catch data underrepresent shark and ray taxa caught in Mediterranean and Black Sea fisheries. Mar. Pol. 105, 1–9 (2019).

    Article 

    Google Scholar 

  • Ferretti, F., Myers, R. A., Serena, F. & Lotze, H. K. Loss of large predatory sharks from the Mediterranean Sea. Conserv. Biol. 22, 952–964 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Colloca, F., Enea, M., Ragonese, S. & Di Lorenzo, M. A century of fishery data documenting the collapse of smooth-hounds (Mustelus spp.) in the Mediterranean Sea. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 1145–1155 (2017).

    Article 

    Google Scholar 

  • Colloca, F., Carrozzi, V., Simonetti, A. & Lorenzo, M. D. Using local ecological knowledge of fishers to reconstruct abundance trends of Elasmobranch populations in the Strait of Sicily. Front. Mar. Sci. 7, 1–8 (2020).

    Article 

    Google Scholar 

  • FAO. The State of World Fisheries and Aquaculture.Contributing to food security and nutrition for all. Rome. pp 200 (2016).

  • Milazzo, M., Cattano, C., Al Mabruk, S. A. A. & Giovos, I. Mediterranean sharks and rays need action. Science 371, 355–356 (2021).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Claudet, J., Loiseau, C., Sostres, M. & Zupan, M. Underprotected marine protected areas in a global biodiversity hotspot. One Earth 2, 380–384 (2020).

    ADS 
    Article 

    Google Scholar 

  • Maynou, F. et al. Estimating trends of population decline in long-lived marine species in the Mediterranean Sea based on fishers’ perceptions. PLoS One 6, e21818 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Serena, F. et al. Species diversity, taxonomy and distribution of Chondrichthyes in the Mediterranean and Black Sea. Eur. Zool. J. 87, 497–536 (2020).

    Article 

    Google Scholar 

  • Morey, G., Moranta, J., Riera, F., Grau, A. M. & Morales-NIN, B. Elasmobranchs in trammel net fishery associated to marine reserves in the Balearic Islands (NW Mediterranean). Cybium 30, 125–132 (2006).

    Google Scholar 

  • Temple, A. J. et al. Marine megafauna interactions with small-scale fisheries in the southwestern Indian Ocean: a review of status and challenges for research and management. Rev. Fish. Biol. Fish. 28, 89–115 (2018).

    Article 

    Google Scholar 

  • Siskey, M. R., Shipley, O. N. & Frisk, M. G. Skating on thin ice: Identifying the need for species- ­ specific data and defined migration ecology of Rajidae spp. Fish Fish 20, 286–302 (2019).

    Article 

    Google Scholar 

  • Chapman, D. D., Feldheim, K. A., Papastamatiou, Y. P. & Hueter, R. E. There and back again: a review of residency and return migrations in Sharks, with implications for population structure and management. Ann. Rev. Mar. Sci. 7, 547–570 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Heupel, M. R., Carlson, J. K. & Simpfendorfer, C. A. Shark nursery areas: Concepts, definition, characterization and assumptions. Mar. Ecol. Prog. Ser. 337, 287–297 (2007).

    ADS 
    Article 

    Google Scholar 

  • Speed, C., Field, I., Meekan, M. & Bradshaw, C. Complexities of coastal shark movements and their implications for management. Mar. Ecol. Prog. Ser. 408, 275–293 (2010).

    ADS 
    Article 

    Google Scholar 

  • Knip, D. M., Heupel, M. R. & Simpfendorfer, C. A. Mortality rates for two shark species occupying a shared coastal environment. Fish. Res. 125–126, 184–189 (2012).

    Article 

    Google Scholar 

  • Espinoza, M., Farrugia, T. J. & Lowe, C. G. Habitat use, movements and site fidelity of the gray smooth-hound shark (Mustelus californicus Gill 1863) in a newly restored southern California estuary. J. Exp. Mar. Bio. Ecol. 401, 63–74 (2011).

    Article 

    Google Scholar 

  • Myers, R. A. & Mertz, G. The limits of exploitation: A precautionary approach. Ecol. Appl. 8, 165–169 (1998).

    Article 

    Google Scholar 

  • Ferretti, F., Osio, G., Jenkins, C., Rosenberg, A. A. & Lotze, H. K. Long-term change in a meso-predator community in response to prolonged and heterogeneous human impact. Sci. Rep. 3, 1057 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Di Lorenzo, M. et al. Ontogenetic trophic segregation between two threatened smooth ‑ hound sharks in the Central Mediterranean Sea. Sci. Rep. 10, 1–15 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mulas, A. et al. Resource partitioning among sympatric elasmobranchs in the central-western Mediterranean continental shelf. Mar. Biol. 166, 1–16 (2019).

    Article 

    Google Scholar 

  • Silva, P. M., Teixeira, C. M., Pita, C., Cabral, H. N. & França, S. Portuguese artisanal fishers’ knowledge about Elasmobranchs—A case study. Front. Mar. Sci. 8, 1–9 (2021).

    Google Scholar 

  • Cortés, E. & Brooks, E. N. Stock status and reference points for sharks using data-limited methods and life history. Fish Fish 19, 1110–1129 (2018).

    Article 

    Google Scholar 

  • Prince, J. D. Gauntlet fisheries for elasmobranchs – The secret of sustainable shark fisheries. J. Northwest Atl. Fish. 37, 407–416 (2005).

    Article 

    Google Scholar 

  • Booth, H., Squires, D. & Milner-Gulland, E. J. The neglected complexities of shark fisheries, and priorities for holistic risk-based management. Ocean Coast. Manag. 182, 104994 (2019).

    Article 

    Google Scholar 

  • Juhel, J. B. et al. Reef accessibility impairs the protection of sharks. J. Appl. Ecol. 55, 673–683 (2018).

    Article 

    Google Scholar 

  • Espinoza, M., Cappo, M., Heupel, M. R., Tobin, A. J. & Simpfendorfer, C. A. Quantifying shark distribution patterns and species-habitat associations: Implications of Marine Park zoning. PLoS One 9, e106885 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Cattano, C., Turco, G., Di Lorenzo, M., Visconti, G. & Milazzo, M. Sandbar shark aggregation in the central Mediterranean Sea and potential effects of tourism. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 1420–1428 (2021).

    Article 

    Google Scholar 

  • O’Connell, C. P., Stroud, E. M. & He, P. The emerging field of electrosensory and semiochemical shark repellents: Mechanisms of detection, overview of past studies, and future directions. Ocean Coast. Manag. 97, 2–11 (2014).

    Article 

    Google Scholar 

  • Barbato, M. et al. The use of fishers’ Local Ecological Knowledge to reconstruct fish behavioural traits and fishers’ perception of conservation relevance of elasmobranchs in the Mediterranean Sea. Mediterr. Mar. Sci. 22, 603–622 (2021).

    Article 

    Google Scholar 

  • Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Booth, H., Squires, D. & Milner-Gulland, E. J. The mitigation hierarchy for sharks: A risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. Fish Fish 21, 269–289 (2020).

    Article 

    Google Scholar 

  • Sala, E. et al. Author correction: protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Di Franco, A. et al. Improving marine protected area governance through collaboration and co-production. J. Environ. Manag. 269, 110757 (2020).

    Article 

    Google Scholar 

  • Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with imageJ. Biophotonics Int 11, 36–41 (2004).

    Google Scholar 

  • Froese, R., & Pauly, D. FishBase. https://www.fishbase.org (2021).

  • Micheli, F. et al. Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: assessing current pressures and opportunities. PLoS ONE 8, e79889 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Atwood, T. B. et al. Herbivores at the highest risk of extinction among mammals, birds, and reptiles. Sci. Adv. 6, eabb8458 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Munstermann, M. J. et al. A global ecological signal of extinction risk in terrestrial vertebrates. Cons. Biol. 36, 1–13 (2021).

    Google Scholar 

  • Martin, T. G., Wintle, A., Rhodes, J. R., Field, A. & Low-choy, S. J. REVIEWS AND Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol. Lett. 8, 1235–1246 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Rigby, R. A., Stasinopoulos, D. M. & Lane, P. W. Generalized additive models for location, scale and shape. J. R. Stat. Soc. Ser. C. Appl. Stat. 54, 507–554 (2005).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org (2016).

  • Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article 

    Google Scholar 

  • Akaike, H. A new look at the Statistical Model Identification. IEEE Trans. Autom. Contr. 19, 716–723 (1974).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Kariya, T. Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to The Annals of Statistics. Ann. Stat. 19, 1403–1433, www.jstor.org (1991). ®.

    Google Scholar 

  • Stasinopoulos, D. M. & Rigby, R. A. Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Softw. 23, 1–46 (2007).

    Article 

    Google Scholar 

  • Van Buuren, S. & Fredriks, M. Worm plot: A simple diagnostic device for modelling growth reference curves. Stat. Med. 20, 1259–1277 (2001).

    PubMed 
    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2020).

  • Legendre, P. & Legendre, L. Numerical ecology, 2nd English edn. Elsevier, Amsterdam (1998).

  • Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Oksanen, A. J. et al. Vegan: Community Ecology Package. R package Version 2.0-2 (2011). Available at: http://cran.r-project.org/. (2012).

  • Di Lorenzo et al. Dataset1: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318878.v1 (2022).

  • Di Lorenzo et al. Dataset2: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318881.v3 (2022).

  • Di Lorenzo et al. Dataset3: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare. https://doi.org/10.6084/m9.figshare.18318884.v1 (2022).

  • Di Lorenzo et al. Dataset4: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare. https://doi.org/10.6084/m9.figshare.18318887.v1 (2022).

  • Di Lorenzo et al. Code1: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318875.v2 (2022).

  • Di Lorenzo et al. Code2: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318890.v1 (2022).

  • Di Lorenzo et al. Code3: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318893.v1 (2022).


  • Source: Ecology - nature.com

    Distribution model transferability for a wide-ranging species, the Gray Wolf

    New J-WAFS-led project combats food insecurity