in

The Holocene temperature conundrum answered by mollusk records from East Asia

  • Jiang, D. B., Lang, X. M., Tian, Z. P. & Wang, T. Considerable model-data mismatch in temperature over China during the mid-Holocene: results of PMIP simulations. J. Clim. 25, 4135–4153 (2012).

    ADS 
    Article 

    Google Scholar 

  • Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11300 years. Science 339, 1198–1201 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl Acad. Sci. USA 111, E3501–E3505 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marsicek, J., Shuman, B., Bartlein, P., Shafer, S. L. & Brewer, S. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554, 92–96 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Affolter, S., Huselmann, A., Fleitmann, D., Edwards, R. L. & Leuenberger, M. Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years. Sci. Adv. 5, eaav3809 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Bova, S., Rosenthal, Y., Liu, Z. & Yan, M. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589, 548–553 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Meyer, H. et al. Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene. Nat. Geosci. 8, 122–125 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Baker, J., Lachniet, M., Chervyatsova, O., Asmerom, Y. & Polyak, V. J. Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing. Nat. Geosci. 10, 430–435 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mann, M., Schmidt, G., Miller, S. & LeGrande, A. Potential biases in inferring Holocene temperature trends from long-term borehole information. Geophys. Res. Lett. 36, L05708 (2009).

    ADS 
    Article 

    Google Scholar 

  • Liu, T. S. Loess and the Environment (In Chinese). (China Ocean Press, Beijing, 1985).

  • Rousseau, D. D. & Wu, N. Q. A new molluscan record of the monsoon variability over the past 130 000 yr in the Luochuan loess sequence, China. Geology 25, 275–278 (1997).

    ADS 
    Article 

    Google Scholar 

  • Wu, N. Q., Li, F. J. & Rousseau, D. D. Terrestrial mollusk records from Chinese loess sequences and changes in the East Asian monsoonal environment. J. Asian Earth Sci. 155, 35–48 (2018).

    ADS 
    Article 

    Google Scholar 

  • Qian, L. Q. Climate of Loess Plateau (in Chinese). (China Meteorological Press, Beijing, 1991).

  • Chen, D. & Gao, J. Economic Fauna Sinica of China: Terrestrial Mollusca (in Chinese). (Science Press, Beijing, 1987).

  • Proćków, M., Drvotová, M., Juřičková, L. & Kuźnik-Kowalska, E. Field and laboratory studies on the life-cycle, growth and feeding preference in the hairy snail Trochulus hispidus (L., 1758) (Gastropoda: Pulmonata: Hygromiidae). Biologia 68, 131–141 (2013).

    Article 

    Google Scholar 

  • Rousseau, D. Climatic transfer function from Quaternary molluscs in European loess deposits. Quat. Res. 36, 195–209 (1991).

    Article 

    Google Scholar 

  • Rousseau, D., Preece, R. & Limondin-Lozouet, N. British late glacial and Holocene climatic history reconstructed from land snail assemblages. Geology 26, 651–654 (1998).

    ADS 
    Article 

    Google Scholar 

  • Wang, Z. H., Fang, J. Y., Tang, Z. Y. & Lin, X. Patterns, determinants and models of woody plant diversity in China. Proc. R. Soc. B 278, 2122–2132 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Gu, Z. Y., Liu, Z. X., Xu, B. & Wu, N. Q. Stable carbon and oxygen isotopes in land snail carbonate shells from a last glacial loess sequence and their implications of environmental changes (in Chinese). Quat. Sci. 29, 13–22 (2009).

    CAS 

    Google Scholar 

  • Sun, X. H., Gu, Z. Y. & Xu, B. Oxygen isotopic variations in the shells collected monthly from a live species of land snails at local in Zhenjiang, Jiangsu Province, China (in Chinese). Quat. Sci. 29, 976–980 (2009).

    CAS 

    Google Scholar 

  • Huang, L., Wu, N., Gu, Z. & Chen, X. Variability of snail growing season at the Chinese Loess Plateau during the last 75 ka. Chin. Sci. Bull. 57, 1036–1045 (2012).

    CAS 
    Article 

    Google Scholar 

  • Dong, Y. J. et al. Paleorecords reveal the increased temporal instability of species diversity under biodiversity loss. Quat. Sci. Rev. 269, 107147 (2021).

    Article 

    Google Scholar 

  • Horsák, M. Mollusc assemblages in palaeoecological reconstructions: an investigation of their predictive power using transfer function models. Boreas 40, 459–467 (2011).

    Article 

    Google Scholar 

  • Sümegi, P. & Gulyás, S. Some notes on the interpretation and reliability of malacological proxies in paleotemperature reconstructions from loess- comments to Obreht et al.‘s “A critical reevaluation of paleoclimate proxy records from loess in the Carpathian Basin”. Earth-Sci. Rev. 221, 103675 (2021).

  • Samartin, S. et al. Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nat. Geosci. 10, 207–212 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Seppä, H., Birks, H., Odland, A., Poska, A. & Veski, S. A modern pollen-climate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. J. Biogeogr. 31, 251–267 (2004).

    Article 

    Google Scholar 

  • Allen, J. et al. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740–743 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Rioual, P. et al. High-resolution record of climate stability in France during the last interglacial period. Nature 413, 293–296 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Salonen, J. S. et al. Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian. Nat. Commun. 9, 2851 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lu, H. et al. Seasonal climatic variation recorded by phytolith assemblages from Baoji loess sequence in central China over the last 150000 a. Sci. China, Ser. D. 26, 629–639 (1996).

    Google Scholar 

  • Telford, R. J. & Birks, H. J. B. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quat. Sci. Rev. 30, 1272–1278 (2011).

    ADS 
    Article 

    Google Scholar 

  • Lu, H. Y., Wu, N. Q., Liu, K. B., Jiang, H. & Liu, T. S. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: palaeoenvironmental reconstruction in the Loess Plateau. Quat. Sci. Rev. 26, 759–772 (2007).

    ADS 
    Article 

    Google Scholar 

  • Sun, J. M., Diao, G. Y., Wen, Q. Z. & Zhou, H. Y. A preliminary study on quantitative estimate of Palaeoclimate by using geochemical transfer function in the Loess Plateau (In Chinese). Geochimica 28, 265–272 (1999).

    CAS 

    Google Scholar 

  • Wen, R. et al. Pollen–climate transfer functions intended for temperate eastern Asia. Quat. Int. 311, 3–11 (2013).

    Article 

    Google Scholar 

  • Xu, Q., Xiao, J., Li, Y., Tian, F. & Nakagawa, T. Pollen-based quantitative reconstruction of Holocene climate changes in the Daihai lake area, inner Mongolia, China. J. Clim. 23, 2856–2868 (2010).

    ADS 
    Article 

    Google Scholar 

  • Li, J. et al. Quantitative Holocene climatic reconstructions for the lower Yangtze region of China. Clim. Dyn. 50, 1101–1113 (2018).

    Article 

    Google Scholar 

  • Nakagawa, T., Tarasov, P. E., Nishida, K., Gotanda, K. & Yasuda, Y. Quantitative pollen-based climate reconstruction in central Japan: application to surface and Late Quaternary spectra. Quat. Sci. Rev. 21, 2099–2113 (2002).

    ADS 
    Article 

    Google Scholar 

  • Chen, M.-T. et al. Dynamic millennial-scale climate changes in the northwestern Pacific over the past 40,000 years. Geophys. Res. Lett. 37, L23603 (2010).

    ADS 

    Google Scholar 

  • Sun, Y., Oppo, D. W., Xiang, R., Liu, W. & Gao, S. Last deglaciation in the Okinawa Trough: Subtropical northwest Pacific link to Northern Hemisphere and tropical climate. Paleoceanography 20, PA4005 (2005).

    ADS 
    Article 

    Google Scholar 

  • de Garidel-Thoron, T. et al. A multiproxy assessment of the western equatorial Pacific hydrography during the last 30 kyr. Paleoceanography 22, PA3204 (2007).

    ADS 

    Google Scholar 

  • Chen, F., Duan, Y. & Hou, J. An 88 ka temperature record from a subtropical lake on the southeastern margin of the Tibetan Plateau (third pole): new insights and future perspectives. Sci. Bull. 66, 1056–1057 (2021).

    Article 

    Google Scholar 

  • James, R. P. & Arguez, A. On the estimation of daily climatological temperature variance. J. Atmos. Ocean. Tech. 32, 2297–2304 (2015).

    Article 

    Google Scholar 

  • Mearns, L. O., Rosenzweig, C. & Goldberg, R. Mean and variance change in climate scenarios: methods, agricultural applications, and measures of uncertainty. Climatic Change 35, 367–396 (1997).

    Article 

    Google Scholar 

  • Laskar, J., Fienga, A., Gastineau, M. & Manche, H. La2010: a new orbital solution for the long-term motion of the Earth. Astron. Astrophys. 532, A89 (2011).

    ADS 
    MATH 
    Article 

    Google Scholar 

  • Bader, J. et al. Global temperature modes shed light on the Holocene temperature conundrum. Nat. Commun. 11, 4726 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, Y. et al. A possible role of dust in resolving the Holocene temperature conundrum. Sci. Rep. 8, 4434 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Thompson, A. J., Zhu, J., Poulsen, C. J., Tierney, J. E. & Skinner, C. B. Northern Hemisphere vegetation change drives a Holocene thermal maximum. Sci. Adv. 8, eabj6535 (2022).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lambert, F. et al. The role of mineral-dust aerosols in polar temperature amplification. Nat. Clim. Chang. 3, 487–491 (2013).

    ADS 
    Article 

    Google Scholar 

  • Xu, Y., Wang, H., Liao, H. & Jiang, D. Simulation of the direct radiative effect of mineral dust aerosol on the climate at the last glacial maximum. J. Clim. 24, 843–858 (2011).

    ADS 
    Article 

    Google Scholar 

  • Wohlfahrt, J., Harrison, S. P. & Braconnot, P. Synergistic feedbacks between ocean and vegetation on mid- and high-latitude climates during the mid-Holocene. Clim. Dynam. 22, 223–238 (2004).

    ADS 
    Article 

    Google Scholar 

  • Jahn, A., Claussen, M., Ganopolski, A. & Brovkin, V. Quantifying the effect of vegetation dynamics on the climate of the Last Glacial Maximum. Clim. Past 1, 1–7 (2005).

    Article 

    Google Scholar 

  • Braconnot, P., Joussaume, S., Marti, O. & de Noblet, N. Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation. Geophys. Res. Lett. 26, 2481–2484 (1999).

    ADS 
    Article 

    Google Scholar 

  • Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).

    ADS 
    Article 

    Google Scholar 

  • Zhang, X. & Chen, F. Non-trivial role of internal climate feedback on interglacial temperature evolution. Nature 600, E1–E3 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, F. J. et al. Quantitative distribution and calculation of ecological amplitude of land snail Metodontia in the Chinese Loess Plateau and adjacent regions (In Chinese with English abstract). Quat. Sci. 36, 564–574 (2016).

    Google Scholar 

  • Dong, Y. J. et al. Influence of monsoonal water-energy dynamics on terrestrial mollusk species-diversity gradients in northern China. Sci. Total Environ. 676, 206–214 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dong, Y. J. et al. Anthropogenic modification of soil communities in northern China for at least two millennia: Evidence from a quantitative mollusk approach. Quat. Sci. Rev. 248, 106579 (2020).

    Article 

    Google Scholar 

  • Cameron, R. A. D. & Pokryszko, B. M. Estimating the species richness and composition of land mollusc communities: Problems, consequences and practical advice. J. Conchol. 38, 529–547 (2005).

    Google Scholar 

  • Dong, Y., Wu, N., Li, F., Huang, L. & Wen, W. Time-transgressive nature of the magnetic susceptibility record across the Chinese Loess Plateau at the Pleistocene/Holocene transition. PLoS One 10, e0133541 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). (Microcomputer Power, New York, 2002).

  • Ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and User’s Guide: Software for Ordination (Version 5.0). (Microcomputer Power, New York, 2012).

  • Ter Braak, C. J. F. & Juggins, S. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269, 485–502 (1993).

    Article 

    Google Scholar 

  • Birks, H. J. B., Lotter, A. F., Juggins, S. & Smol, J. P. Tracking Environmental Change Using Lake Sediments Volume 5: Data Handling and Numerical Techniques. p. 123–141. (Springer, London, 2012).

  • Ter Braak, C. J. F. Canonical community ordination. Part I: Basic theory and linear methods. Ecoscience 1, 127–140 (1994).

    Article 

    Google Scholar 

  • Juggins, S. C2 data analysis (version 1.7.4). (Newcastle University, Newcastle, 2011).

  • Juggins, S. Rioja: Analysis of Quaternary Science Data. R package version 0.9-21 http://cran.r-project.org/package=rioja (2017).

  • Simpson, G. L. & Oksanen, J. Analogue: Analogue matching and Modern Analogue. Technique Transfer Function Models. R package version 0.17-4 https://cran.r-project.org/package=analogue (2020).

  • Telford, R. J. palaeoSig: Significance Tests of Quantitative Palaeoenvironmental Reconstructions. R package version 2.0-3 http://cran.r-project.org/package=palaeoSig (2019).

  • Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. Proc. Natl Acad. Sci. USA 109, E2415–E2423 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olonscheck, D., Schurer, A. P., Lücke, L. & Hegerl, G. C. Large-scale emergence of regional changes in year-to-year temperature variability by the end of the 21st century. Nat. Commun. 12, 7237 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, Y., Ren, G., Kang, H. & Sun, X. A significant bias of Tmax and Tmin average temperature and its trend. J. Appl. Meteorol. Clim. 58, 2235–2246 (2019).

    ADS 
    Article 

    Google Scholar 

  • Parey, S., Dacunha-Castelle, D. & Hoang, T. T. H. Mean and variance evolutions of the hot and cold temperatures in Europe. Clim. Dyn. 34, 345–359 (2010).

    Article 

    Google Scholar 

  • Dong, Y. SeaTemCon_R code for “The Holocene temperature conundrum answered by mollusk records from East Asia”. Zenodo https://doi.org/10.5281/zenodo.6426798 (2022).

    Article 

    Google Scholar 

  • Dong, Y. Data repository for “The Holocene temperature conundrum answered by mollusk records from East Asia”. Zenodo https://doi.org/10.5281/zenodo.6426911 (2022).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    High-energy and hungry for the hardest problems

    A harmonized dataset of sediment diatoms from hundreds of lakes in the northeastern United States