Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).
Google Scholar
Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).
Google Scholar
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
Google Scholar
IPCC. Climate Change 2021: The Physical Science Basis. (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in press).
Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).
Wood, T. E. et al. in Ecosystem Consequences of Soil Warming: Microbes, Vegetation, Fauna and Soil Biogeochemistry (ed. Mohan, J.) Ch. 14 (Academic Press, 2019).
Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).
Google Scholar
van Gestel, N. et al. Predicting soil carbon loss with warming. Nature 554, E4–E5 (2018).
Google Scholar
Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–104 (2017).
Google Scholar
Romero-Olivares, A. L., Allison, S. D. & Treseder, K. K. Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biol. Biochem. 107, 32–40 (2017).
Google Scholar
Anderson-Teixeira, K. J., Wang, M. M. H., McGarvey, J. C. & LeBauer, D. S. Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db). Glob. Change Biol. 22, 1690–1709 (2016).
Google Scholar
Nottingham, A. T., Meir, P., Velasquez, E. & Turner, B. L. Soil carbon loss by experimental warming in a tropical forest. Nature 584, 234–237 (2020).
Google Scholar
Kimball, B. A. et al. Infrared heater system for warming tropical forest understory plants and soils. Ecol. Evol. 8, 1932–1944 (2018).
DeAngelis, K. M. et al. Long-term forest soil warming alters microbial communities in temperate forest soils. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.00104 (2015)
Bååth, E. Temperature sensitivity of soil microbial activity modeled by the square root equation as a unifying model to differentiate between direct temperature effects and microbial community adaptation. Glob. Change Biol. 24, 2850–2861 (2018).
Google Scholar
Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change 3, 909–912 (2013).
Google Scholar
Ratkowsky, D. A., Olley, J., Mcmeekin, T. A. & Ball, A. Relationship between temperature and growth-rate of bacterial cultures. J. Bacteriol. 149, 1–5 (1982).
Google Scholar
Rinnan, R., Rousk, J., Yergeau, E., Kowalchuk, G. A. & Bååth, E. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming. Glob. Change Biol. 15, 2615–2625 (2009).
Google Scholar
Nottingham, A. T., Bååth, E., Reischke, S., Salinas, N. & Meir, P. Adaptation of soil microbial growth to temperature: using a tropical elevation gradient to predict future changes. Glob. Change Biol. https://doi.org/10.1111/gcb.14502 (2019).
Li, J. Q., Bååth, E., Pei, J. M., Fang, C. M. & Nie, M. Temperature adaptation of soil microbial respiration in alpine, boreal and tropical soils: an application of the square root (Ratkowsky) model. Glob. Change Biol. 27, 1281–1292 (2021).
Google Scholar
Rousk, J., Frey, S. D. & Bååth, E. Temperature adaptation of bacterial communities in experimentally warmed forest soils. Glob. Change Biol. 18, 3252–3258 (2012).
Google Scholar
Nottingham, A. T. et al. Annual to decadal temperature adaptation of the soil bacterial community after translocation across an elevation gradient in the Andes. Soil Biol. Biochem. 158, 108217 (2021).
Google Scholar
Nottingham, A. T. et al. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol. Lett. 22, 1889–1899 (2019).
Google Scholar
Donhauser, J., Niklaus, P. A., Rousk, J., Larose, C. & Frey, B. Temperatures beyond the community optimum promote the dominance of heat-adapted, fast growing and stress resistant bacteria in alpine soils. Soil Biol. Biochem. 148, 107873 (2020).
Google Scholar
Mangan, S. A. et al. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).
Pold, G., Melillo, J. M. & DeAngelis, K. M. Two decades of warming increases diversity of a potentially lignolytic bacterial community. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.00480 (2015).
Zhou, J. Z. et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun. 7, 12083 (2016).
Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).
Wu, L. et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nat. Microbiol. 7, 1054–1062 (2022).
Oliverio, A. M., Bradford, M. A. & Fierer, N. Identifying the microbial taxa that consistently respond to soil warming across time and space. Glob. Change Biol. 23, 2117–2129 (2017).
Google Scholar
Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).
Google Scholar
Spracklen, D. V., Baker, J. C. A., Garcia-Carreras, L. & Marsham, J. H. The effects of tropical vegetation on rainfall. Annu. Rev. Env. Resour. 43, 193–218 (2018).
Google Scholar
Bradford, M. A. Thermal adaptation of decomposer communities in warming soils. Front. Microbiol. https://doi.org/10.3389/Fmicb.2013.00333 (2013).
Pietikäinen, J., Pettersson, M. & Bååth, E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol. Ecol. 52, 49–58 (2005).
Google Scholar
Mori, A. S. et al. Biodiversity–productivity relationships are key to nature-based climate solutions. Nat. Clim. Change 11, 543–550 (2021).
Google Scholar
Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).
Google Scholar
Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).
Google Scholar
Nottingham, A. T. et al. Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology 99, 2455–2466 (2018).
Google Scholar
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Google Scholar
Brown, J. H. Why are there so many species in the tropics? J. Biogeogr. 41, 8–22 (2014).
Google Scholar
LaManna, J. A. et al. Plant diversity increases with the strength of negative density dependence at the global scale. Science 356, 1389–1392 (2017).
Google Scholar
Bagchi, R. et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88 (2014).
Google Scholar
Lapebie, P., Lombard, V., Drula, E., Terrapon, N. & Henrissat, B. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat. Commun. https://doi.org/10.1038/s41467-019-10068-5 (2019).
Makhalanyane, T. P. et al. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 39, 203–221 (2015).
Google Scholar
Aydogan, E. L., Moser, G., Muller, C., Kampfer, P. & Glaeser, S. P. Long-term warming shifts the composition of bacterial communities in the phyllosphere of Galium album in a permanent grassland field-experiment. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.00144 (2018).
Hu, D. Y., Zang, Y., Mao, Y. J. & Gao, B. L. Identification of molecular markers that are specific to the class thermoleophilia. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01185 (2019).
Mohan, J. E. et al. Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecol. 10, 3–19 (2014).
Google Scholar
Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Agren, G. I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 196, 79–91 (2012).
Google Scholar
Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).
Google Scholar
Reed, S. C. et al. Soil biogeochemical responses of a tropical forest to warming and hurricane disturbance. Adv. Ecol. Res. 62, 225–252 (2020).
Google Scholar
Nottingham, A. T., Turner, B. L., Stott, A. W. & Tanner, E. V. J. Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biol. Biochem. 80, 26–33 (2015).
Google Scholar
Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Change 8, 885–889 (2018).
Kemmitt, S. J. et al. Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—a new perspective. Soil Biol. Biochem. 40, 61–73 (2008).
Google Scholar
Nannipieri, P., Trasar-Cepeda, C. & Dick, R. P. Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fert. Soils 54, 11–19 (2018).
Google Scholar
Wallenstein, M., Allison, S., Ernakovich, J., Steinweg, J. M. & Sinsabaugh, R. in Soil Enzymology. Soil Biology Vol. 22 (eds Shukla, G. & Varma, A.) Ch. 13 (Springer, 2011).
Zhou, X. Y., Chen, L., Xu, J. M. & Brookes, P. C. Soil biochemical properties and bacteria community in a repeatedly fumigated-incubated soil. Biol. Fert. Soils 56, 619–631 (2020).
Google Scholar
Sanchez-Julia, M. & Turner, B. L. Abiotic contribution to phenol oxidase activity across a manganese gradient in tropical forest soils. Biogeochemistry https://doi.org/10.1007/s10533-021-00764-0 (2021).
Razavi, B. S., Liu, S. B. & Kuzyakov, Y. Hot experience for cold-adapted microorganisms: temperature sensitivity of soil enzymes. Soil Biol. Biochem. 105, 236–243 (2017).
Google Scholar
Pinney, M. M. et al. Parallel molecular mechanisms for enzyme temperature adaptation. Science 371, eaay2784 (2021).
Google Scholar
Fanin, N. et al. Soil enzymes in response to climate warming: mechanisms and feedbacks. Funct. Ecol. https://doi.org/10.1111/1365-2435.14027 (2022).
Hall, S. J. & Silver, W. L. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils. Glob. Change Biol. 19, 2804–2813 (2013).
Google Scholar
Freeman, C., Ostle, N. & Kang, H. An enzymic ‘latch’ on a global carbon store. Nature 409, 149 (2001).
Google Scholar
Sarmiento, C. et al. Soilborne fungi have host affinity and host-specific effects on seed germination and survival in a lowland tropical forest. Proc. Natl Acad. Sci. USA 114, 11458–11463 (2017).
Google Scholar
Condit, R., Perez, R., Lao, S., Aguilar, S. & Hubbell, S. P. Demographic trends and climate over 35 years in the Barro Colorado 50 ha plot. For. Ecosyst. https://doi.org/10.1186/s40663-017-0103-1 (2017).
Woodring, W. P. Geology of Barro Colorado Island. Smithson. Misc. Collect. 135, 1–39 (1958).
Sanchez, P. A. & Logan, T. J. Myths and science about the chemistry and fertility of soils in the tropics. SSSA Spec. Publ. 29, 35–46 (1992).
Google Scholar
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).
Google Scholar
Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).
Google Scholar
Jenkinson, D. S., Brookes, P. C. & Powlson, D. S. Measuring soil microbial biomass. Soil Biol. Biochem. 36, 5–7 (2004).
Google Scholar
Kouno, K., Tuchiya, Y. & Ando, T. Measurement of soil microbial biomass phosphorus by an anion-exchange membrane method. Soil Biol. Biochem. 27, 1353–1357 (1995).
Google Scholar
Tabatabai, M. A. in Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties (ed. Page, A.L.) 778–833 (SSSA, 1994).
Marx, M. C., Wood, M. & Jarvis, S. C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33, 1633–1640 (2001).
Google Scholar
Price, N. & Stevens, L. Fundamentals of Enzymology: Cell and Molecular Biology of Catalytic Proteins (Oxford Univ. Press, 1999).
Hagerty, S. B., Allison, S. D. & Schimel, J. P. Evaluating soil microbial carbon use efficiency explicitly as a function of cellular processes: implications for measurements and models. Biogeochemistry 140, 269–283 (2018).
Google Scholar
Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Change 3, 395–398 (2013).
Google Scholar
Spohn, M. et al. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biol. Biochem. 97, 168–175 (2016).
Google Scholar
Sinsabaugh, R. L. et al. Stoichiometry of microbial carbon use efficiency in soils. Ecol. Monogr. 86, 172–189 (2016).
Google Scholar
Geyer, K. M., Dijkstra, P., Sinsabaugh, R. & Frey, S. D. Clarifying the interpretation of carbon use efficiency in soil through methods comparison. Soil Biol. Biochem. 128, 79–88 (2019).
Google Scholar
Bååth, E., Pettersson, M. & Söderberg, K. H. Adaptation of a rapid and economical microcentrifugation method to measure thymidine and leucine incorporation by soil bacteria. Soil Biol. Biochem. 33, 1571–1574 (2001).
Google Scholar
Bárcenas-Moreno, G., Gomez-Brandon, M., Rousk, J. & Bååth, E. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob. Change Biol. 15, 2950–2957 (2009).
Google Scholar
Smirnova, E., Huzurbazar, S. & Jafari, F. PERFect: PERmutation Filtering test for microbiome data. Biostatistics 20, 615–631 (2019).
Google Scholar
Alberdi, A. & Gilbert, M. T. P. hilldiv: an R package for the integral analysis of diversity based on Hill numbers. Preprint at bioRxiv https://doi.org/10.1101/545665 (2019).
Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).
Google Scholar
Oksanen, J. et al. vegan: Community ecology package, R Package version 2 https://cran.r-project.org/web/packages/vegan/ (2018).
Dufrene, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. https://doi.org/10.1186/gb-2011-12-6-r60 (2011).
Roesch, L. F. W. et al. PIME: a package for discovery of novel differences among microbial communities. Mol. Ecol. Resour. 20, 415–428 (2020).
Google Scholar
Roberts, D.W. labdsv: Ordination and multivariate analysis for ecology. R package version 2.0-1 https://cran.r-project.org/web/packages/labdsv/ (2019).
Cao, Y. et al. microbiomeMarker: an R/Bioconductor package for microbiome marker identification and visualization. Bioinformatics 38, 4027–4029 (2022).
Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. Peerj 3, e1319 (2015).
Google Scholar
Peterson, R. A. & Cavanaugh, J. E. Ordered quantile normalization: a semiparametric transformation built for the cross-validation era. J. Appl. Stat. 47, 2312–2327 (2020).
Google Scholar
Source: Ecology - nature.com