in

Evidence of sweet corn yield losses from rising temperatures

  • Brown, M. E. et al. In Climate Change, global food security, and the U.S. food system (2015).

  • Masson-Delmotte, V. et al. AR6 Climate Change 2021: The Physical Science Basis—IPCC. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).

  • Douris, J. et al. WMO Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019) (WMO-No. 1267). In WMO Statement on the state of the Global Climate vol. 1267 (WMO, 2021).

  • Smith, A. B. U.S. Billion-dollar Weather and Climate Disasters, 1980present (NCEI Accession 0209268). In National Centers for Environmental Information (2020).

  • Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).

    Article 
    ADS 

    Google Scholar 

  • Mann, M. E. et al. Projected changes in persistent extreme summer weather events: The role of quasi-resonant amplification. Sci. Adv. 4, 5 (2018).

    Article 

    Google Scholar 

  • Li, Y., Guan, K., Schnitkey, G. D., DeLucia, E. & Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Chang. Biol. 25, 2325–2337 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Daloz, A. S. et al. Direct and indirect impacts of climate change on wheat yield in the Indo-Gangetic plain in India. J. Agric. Food Res. 4, 100–132 (2021).

    Google Scholar 

  • Leng, G. Maize yield loss risk under droughts in observations and crop models in the Unites States. Environ. Res. Lett. 16, 24016 (2021).

    Article 

    Google Scholar 

  • Backlund, P., Janetos, A., & Schimel, D. In The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States Synthesis and Assessment Product, vol. 4.3 (2008).

  • Scheelbeek, P. F. D., Tuomisto, H. L., Bird, F. A., Haines, A. & Dangour, A. D. Effect of environmental change on yield and quality of fruits and vegetables: Two systematic reviews and projections of possible health effects. Lancet Glob. Health 5, S21 (2017).

    Article 

    Google Scholar 

  • Drewnowski, A., Dwyer, J., King, J. C. & Weaver, C. M. A proposed nutrient density score that includes food groups and nutrients to better align with dietary guidance. Nutr. Rev. 77, 404–416 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weinberger, K. & Lumpkin, T. A. Diversification into horticulture and poverty reduction: A research agenda. World Dev. 35, 1464–1480 (2007).

    Article 

    Google Scholar 

  • Barnabás, B., Jäger, K. & Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 31, 11–38 (2008).

    PubMed 

    Google Scholar 

  • Kazan, K. & Lyons, R. The link between flowering time and stress tolerance. J. Exp. Bot. 67, 47–60 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Messina, C. D. et al. On the dynamic determinants of reproductive failure under drought in maize. In Silico Plants 1, 1–14 (2019).

    Article 

    Google Scholar 

  • Yang, X., Wang, B., Chen, L., Li, P. & Cao, C. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Sci. Rep. 9, 3742 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deryng, D., Conway, D., Ramankutty, N., Price, J. & Warren, R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. 9, 034011 (2014).

    Article 
    ADS 

    Google Scholar 

  • Owen, P. C. Responses of a semi-dwarf wheat to temperatures representing a tropical dry season. II. Extreme temperatures. Exp. Agric. 7, 43–47 (1971).

    Article 

    Google Scholar 

  • Liu, F., Jensen, C. R. & Andersen, M. N. A review of drought adaptation in crop plants: Changes in vegetative and reproductive physiology induced by ABA-based chemical signals. Aust. J. Agric. Res. 56, 1245–1252 (2005).

    Article 
    CAS 

    Google Scholar 

  • Turc, O., Bouteillé, M., Fuad-Hassan, A., Welcker, C. & Tardieu, F. The growth of vegetative and reproductive structures (leaves and silks) respond similarly to hydraulic cues in maize. New Phytol. 212, 377–388 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Fuad-Hassan, A., Tardieu, F. & Turc, O. Drought-induced changes in anthesis-silking interval are related to silk expansion: A spatio-temporal growth analysis in maize plants subjected to soil water deficit. Plant Cell Environ. 31, 1349–1360 (2008).

    Article 
    PubMed 

    Google Scholar 

  • USDA–National Agricultural Statistics Service (2021). https://data.nal.usda.gov/dataset/nass-quick-stats, accessed 29 December 2021.

  • Challinor, A. J., Parkes, B. & Ramirez-Villegas, J. Crop yield response to climate change varies with cropping intensity. Glob. Chang. Biol. 21, 1679–1688 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Kukal, M. S. & Irmak, S. Climate-driven crop yield and yield variability and climate change impacts on the U.S. great plains agricultural production. Sci. Rep. 8, 1–18 (2018).

    Article 
    ADS 

    Google Scholar 

  • Iizumi, T. & Sakai, T. The global dataset of historical yields for major crops 1981–2016. Sci. Data 7, 1–7 (2020).

    Article 

    Google Scholar 

  • Thornton, M. M. et al. In Daymet: Daily surface weather data on a 1-km grid for North America, Version 4. ORNL DAAC (2020).

  • Ritchie, S. W., Hanway, J. J., Benson, G. O., & Herman, J. C. How a corn plant develops: Special report no. 48. In Ames: Iowa State University of Science and Technology Cooperative Extension Service (1986).

  • Nicholls, N. Increased Australian wheat yield due to recent climate trends. Nature 387, 484–485 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl. Acad. Sci. USA 106, 15594–15598 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dhaliwal, D. S. & Williams, M. M. I. I. Understanding variability in optimum plant density and recommendation domains for crowding stress tolerant processing sweet corn. PLoS ONE 15, e0228809 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siirila-Woodburn, E. R. et al. A low-to-no snow future and its impacts on water resources in the western United States. Nat. Rev. Earth Environ. 2, 800–819 (2021).

    Article 
    ADS 

    Google Scholar 

  • Gilmore, E. C. & Rogers, J. S. heat units as a method of measuring maturity in corn. Agron. J. 50, 611–615 (1958).

    Article 

    Google Scholar 

  • Wang, J. Y. A critique of the heat unit approach to plant response studies. Ecology 41, 785–790 (1960).

    Article 

    Google Scholar 

  • Cross, H. Z. & Zuber, M. S. Prediction of flowering dates in maize based on different methods of estimating thermal units. Agron. J. 64, 351–355 (1972).

    Article 

    Google Scholar 

  • Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).

    Article 
    ADS 

    Google Scholar 

  • Díaz, E. L. et al. In Chapter 20: US Caribbean. Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment, Volume II,(2018).

  • Wang, Y. et al. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environ. Exp. Bot. 158, 80–88 (2019).

    Article 

    Google Scholar 

  • Lohani, N., Singh, M. B. & Bhalla, P. L. High temperature susceptibility of sexual reproduction in crop plants. J. Exp. Bot. 71, 555–568 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jagadish, S. V. K., Craufurd, P. Q. & Wheeler, T. R. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J. Exp. Bot. 58, 1627–1635 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gourdji, S. M., Sibley, A. M. & Lobell, D. B. Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environ. Res. Lett. 8, 024041 (2013).

    Article 
    ADS 

    Google Scholar 

  • Hedhly, A., Hormaza, J. I. & Herrero, M. Global warming and sexual plant reproduction. Trends Plant Sci. 14, 30–36 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Zhao, F. et al. Effects of heat stress during grain filling on sugar accumulation and enzyme activity associated with sucrose metabolism in sweet corn. Acta Agron. Sin. 39, 1644–1651 (2013).

    Article 
    CAS 

    Google Scholar 

  • Lobell, D. B., Bonfils, C. J., Kueppers, L. M. & Snyder, M. A. Irrigation cooling effect on temperature and heat index extremes. Geophys. Res. Lett. 35, 9705 (2008).

    Article 
    ADS 

    Google Scholar 

  • Thiery, W. et al. Present-day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. 122, 1403–1422 (2017).

    Article 
    ADS 

    Google Scholar 

  • Li, Y. et al. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Glob. Chang. Biol. 26, 3065–3078 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Presence of algal symbionts affects denitrifying bacterial communities in the sea anemone Aiptasia coral model

    South African Lagerstätte reveals middle Permian Gondwanan lakeshore ecosystem in exquisite detail