Adams, D. C., Rohlf, F. J. & Slice, D. E. A field comes of age: Geometric morphometrics in the 21st century. Hystrix 24, 7–14. https://doi.org/10.4404/hystrix-24.1-6283 (2013).
Google Scholar
Terray, L. et al. Skull morphological evolution in Malagasy endemic Nesomyinae rodents. PLoS ONE 17, e0263045. https://doi.org/10.1371/journal.pone.0263045 (2022).
Google Scholar
Viacava, P., Baker, A. M., Blomberg, S. P., Phillips, M. J. & Weisbecker, V. Using 3D geometric morphometrics to aid taxonomic and ecological understanding of a recent speciation event within a small Australian marsupial (Antechinus: Dasyuridae). Zool. J. Linn. Soc. 1–16. https://doi.org/10.1093/zoolinnean/zlab048 (2021).
Brassard, C. et al. Morphological and functional divergence of the lower jaw between native and invasive red foxes. J. Mamm. Evol. 29, 335–352. https://doi.org/10.1007/s10914-021-09593-2 (2022).
Google Scholar
Boessneck, J. & von den Driesch, A. The significance of measuring animal bones from archaeological sites. In Approaches to Faunal Analysis in the Middle East (eds Meadows, R. H. & Zeder, M. A.) 5–39 (Peabody Museum Bulletin 2, 1978).
Serjeantson, D. ‘Science is measurement’; ABMAP, a database of domestic animal bone measurements. Environ. Archaeol. 10, 97–103. https://doi.org/10.1179/env.2005.10.1.97 (2005).
Google Scholar
Haruda, A. F. Separating sheep (Ovis aries L.) and goats (Capra hircus L.) using geometric morphometric methods: An investigation of astragalus morphology from late and final Bronze Age Central Asian contexts. Int. J. Osteoarchaeol. 27, 551–562 (2017).
Google Scholar
Davis, S. J. M. Towards a metrical distinction between sheep and goat astragali. In Economic Zooarchaeology: Studies in Hunting, Herding and Early Agriculture (eds Rowley-Conwy, P. et al.) 93–138 (Oxbow Books Limited, 2019).
Jeanjean, M. et al. Sorting the flock: Quantitative identification of sheep and goat from isolated third lower molars and mandibles through geometric morphometrics. J. Archaeol. Sci. 141, 105580. https://doi.org/10.1016/j.jas.2022.105580 (2022).
Google Scholar
Evin, A. et al. Phenotype and animal domestication: A study of dental variation between domestic, wild, captive, hybrid and insular Sus scrofa. BMC Evol. Biol. 15, 1–16. https://doi.org/10.1186/s12862-014-0269-x (2015).
Google Scholar
Harbers, H. et al. The mark of captivity: Plastic responses in the ankle bone of a wild ungulate (Sus scrofa). R. Soc. Open Sci. 7, 192039. https://doi.org/10.1098/rsos.192039 (2020).
Google Scholar
Drake, A. G., Coquerelle, M. & Colombeau, G. 3D morphometric analysis of fossil canid skulls contradicts the suggested domestication of dogs during the late Paleolithic. Sci. Rep. 5, 8299. https://doi.org/10.1038/srep08299 (2015).
Google Scholar
Ventresca Miller, A. R., Haruda, A., Varfolomeev, V., Goryachev, A. & Makarewicz, C. A. Close management of sheep in ancient Central Asia: Evidence for foddering, transhumance, and extended lambing seasons during the Bronze and Iron Ages. Sci. Technol. Archaeol. Res. 6, 41–60. https://doi.org/10.1080/20548923.2020.1759316 (2020).
Duval, C., Lepetz, S., Horard-Herbin, M.-P. & Cucchi, T. Did Romanization impact Gallic pig morphology? New insights from molar geometric morphometrics. J. Archaeol. Sci. 57, 345–354. https://doi.org/10.1016/j.jas.2015.03.004 (2015).
Google Scholar
Davis, S. J. M. Zooarchaeological evidence for Moslem and Christian improvements of sheep and cattle in Portugal. J. Archaeol. Sci. 35, 991–1010. https://doi.org/10.1016/j.jas.2007.07.001 (2008).
Google Scholar
Samper Carro, S. C., Louys, J. & Oonnor, S. Shape does matter: A geometric morphometric approach to shape variation in Indo-Pacific fish vertebrae for habitat identification. J. Archaeol. Sci. 99, 124–134. https://doi.org/10.1016/j.jas.2018.09.010 (2018).
Stimpson, C. M. A 48,000 year record of swiftlets (Aves: Apodidae) in North-western Borneo: Morphometric identifications and palaeoenvironmental implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 374, 132–143. https://doi.org/10.1016/j.palaeo.2013.01.011 (2013).
Google Scholar
Medina, M. E., Picasso, M. B. J., Campos, M. R. & Avila, N. C. Tarsometatarsus, eggshells, and the species level identification of large-sized flightless birds from Boyo Paso 2 (Sierras of Córdoba, Argentina). Int. J. Osteoarchaeol. 29, 584–594. https://doi.org/10.1002/oa.2754 (2019).
Google Scholar
Weaver, L. N. & Grossnickle, D. M. Functional diversity of small-mammal postcrania is linked to both substrate preference and body size. Curr. Zool. 66, 539–553. https://doi.org/10.1093/cz/zoaa057 (2020).
Google Scholar
Chen, X., Milne, N. & O’Higgins, P. Morphological variation of the thoracolumbar vertebrae in Macropodidae and its functional relevance. J. Morphol. 266, 167–181. https://doi.org/10.1002/jmor.10370 (2005).
Google Scholar
Etienne, C., Filippo, A., Cornette, R. & Houssaye, A. Effect of mass and habitat on the shape of limb long bones: A morpho-functional investigation on Bovidae ( Mammalia: Cetartiodactyla ). J. Anat. 238, 886–904. https://doi.org/10.1111/joa.13359 (2020).
Google Scholar
Bassarova, M., Janis, C. M. & Archer, M. The calcaneum-on the heels of marsupial locomotion. J. Mamm. Evol. 16, 1–23. https://doi.org/10.1007/s10914-008-9093-7 (2009).
Google Scholar
Janis, C. M., Buttrill, K. & Figueirido, B. Locomotion in extinct giant kangaroos: Were Sthenurines hop-less monsters?. PLoS ONE 9, e109888. https://doi.org/10.1371/journal.pone.0109888 (2014).
Google Scholar
Argot, C. Functional-adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J. Morphol. 253, 76–108. https://doi.org/10.1002/jmor.1114 (2002).
Google Scholar
Mein, E. & Manne, T. Identifying marsupials from Australian archaeological sites: Current methodological challenges and opportunities in zooarchaeological practice. Archaeol. Ocean. 56, 133–141. https://doi.org/10.1002/arco.5234 (2021).
Google Scholar
Woinarski, J. C. Z. et al. Reading the black book: The number, timing, distribution and causes of listed extinctions in Australia. Biol. Conserv. 239, 108261. https://doi.org/10.1016/j.biocon.2019.108261 (2019).
Google Scholar
Garvey, J. Preliminary zooarchaeological interpretations from Kutikina Cave, south-west Tasmania. Aust. Aborig. Stud. 1, 57–62 (2006).
Veth, P. et al. Montebello Islands Archaeology: Late Quaternary Foragers on an Arid Coastline. (BAR Publishing, 2007).
Morse, K. Who can see the sea? Prehistoric Aboriginal occupation of the Cape Range peninsula. Rec. West. Aust. Mus. Suppl. 45, 227–242 (1993).
Warburton, N. M. & Prideaux, G. Functional pedal morphology of the extinct tree-kangaroo Bohra (Diprotodontia: Macropodidae). In Macropods: The Biology of Kangaroos, Wallabies, and Rat-Kangaroos (eds Coulson, G. & Eldridge, M.) 137–151 (CSIRO Publishing, 2010).
Bishop, N. Functional anatomy of the macropodid pes. Proc. Linn. Soc. New South Wales 117, 17–50 (1997).
Google Scholar
Szalay, F. S. Evolutionary History of the Marsupials and an Analysis of Osteological Characters. (Cambridge University Press, 1994).
Veth, P. et al. Early human occupation of a maritime desert, Barrow Island, north-west Australia. Quat. Sci. Rev. 168, 19–29. https://doi.org/10.1016/j.quascirev.2017.05.002 (2017).
Google Scholar
Moro, D. & Lagdon, R. History and environment of Barrow Island. Rec. West. Aust. Mus. Suppl. 83, 1–8. https://doi.org/10.18195/issn.0313-122x.83.2013.001-008 (2013).
Veth, P., Ditchfield, K. & Hook, F. Maritime deserts of the Australian northwest. Aust. Archaeol. 79, 156–166. https://doi.org/10.1080/03122417.2014.11682032 (2014).
Google Scholar
Morse, K. Coastwatch: Pleistocene resource use on the Cape Range peninsula. In Australian Coastal Archaeology (eds Hall, J. & McNiven, I. J.) 73–78 (ANH Publications, 1999).
Baynes, A. & McDowell, M. C. The original mammal fauna of the Pilbara biogeographic region of north-western Australia. Rec. West. Aust. Mus. Suppl. 78, 285–298. https://doi.org/10.18195/issn.0313-122x.78(1).2010.285-298 (2010).
Google Scholar
Shortridge, G. C. An account of the geographical distribution of the marsupials and monotremes of south-west Australia, having special reference to the specimens collected during the Balston expedition of 1904–1907. Proc. Zool. Soc. Lond. 74, 803–848. https://doi.org/10.1111/j.1469-7998.1910.tb06974.x (1909).
Google Scholar
Ballard, C. K. Use of Epiphyseal and Total Fusion Scores as Methods of Age Estimation and Evaluation of Morphological Indices in the Macropodidae. (Northern Illinois University, 2007).
Rose, R. W. Age estimation of the Tasmanian bettong (Bettongia gaimardi) (Marsupialia: Potoroidae). Wildl. Res. 16, 251–261. https://doi.org/10.1071/WR9890251 (1989).
Google Scholar
Johnson, P. M. & Delean, S. Reproduction in the northern bettong, Bettongia tropica Wakefield (Marsupialia: Potoroidae), in captivity, with age estimation and development of pouch young. Wildl. Res. 28, 79–85. https://doi.org/10.1071/WR00007 (2001).
Google Scholar
Thompson, C. K., Wayne, A. F., Godfrey, S. S. & Andrew Thompson, R. C. Survival, age estimation and sexual maturity of pouch young of the brush-tailed bettong (Bettongia penicillata) in captivity. Aust. Mammal. 37, 29–38. https://doi.org/10.1071/AM14025 (2015).
Google Scholar
Janis, C. M. Correlation of cranial and dental variables with dietary preferences in mammals: A comparison of macropodoids and ungulates. Mem. – Queensl. Museum 28, 349–366 (1990).
Sharman, G. B., Frith, H. J. & Calaby, J. H. Growth of the pouch young, tooth eruption and age determination in the red kangaroo, Megaleia rufa. CSIRO Wildl. Res. 9, 20–49. https://doi.org/10.1071/cwr9640020 (1964).
Google Scholar
Newsome, A. E., Merchant, J. C., Bolton, B. L. & Dudziński, M. L. Sexual dimorphism in molar progression and eruption in the agile wallaby. Wildl. Res. 4, 1–5. https://doi.org/10.1071/WR9770001 (1977).
Google Scholar
Poole, W. E., Merchant, J. C., Carpenter, S. M. & Calaby, J. H. Reproduction, growth and age determination in the yellow-footed rock-wallaby Petrogale xanthopus Gray, in captivity. Wildl. Res. 12, 127–136. https://doi.org/10.1071/WR9850127 (1985).
Google Scholar
Delaney, R. & Marsh, H. Estimating the age of wild rock-wallabies by dental radiography: A basis for quantifying the age structure of a discrete colony of Petrogale assimilis. Wildl. Res. 22, 547–559. https://doi.org/10.1071/WR9950547 (1995).
Google Scholar
Kido, N., Tanaka, S., Wada, Y., Sato, S. & Omiya, T. Molar eruption and identification of the eastern grey kangaroo (Macropus giganteus) at different ages. J. Vet. Med. Sci. 80, 648–652. https://doi.org/10.1292/jvms.17-0069 (2018).
Google Scholar
Koo, T. K. & Li, M. Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15, 155–163. https://doi.org/10.1016/j.jcm.2016.02.012 (2016).
Google Scholar
Claude, J. Log-shape ratios, Procrustes superimposition, elliptic Fourier analysis: Three worked examples in R. Hystrix 24, 94–102. https://doi.org/10.4404/hystrix-24.1-6316 (2013).
Google Scholar
Mosimann, J. E. Size allometry: Size and shape variables with characterizations of the Lognormal and generalized gamma distributions. J. Am. Stat. Assoc. 65, 930–945. https://doi.org/10.2307/2284599 (1970).
Google Scholar
Kovarovic, K., Aiello, L. C., Cardini, A. & Lockwood, C. A. Discriminant function analyses in archaeology: Are classification rates too good to be true ?. J. Archaeol. Sci. 38, 3006–3018. https://doi.org/10.1016/j.jas.2011.06.028 (2011).
Google Scholar
Ramayah, T. et al. Discriminant analysis: An illustrated example. Afr. J. Bus. Manag. 4, 1654–1667 (2010).
Sanchez, P. M. The unequal group size problem in discriminant analysis. J. Acad. Mark. Sci. 2, 629–633. https://doi.org/10.1007/BF02729456 (1974).
Google Scholar
Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. Multivariate Data Analysis. (Cengage, 2018).
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002).
Fox, J. & Weisberg, S. An R Companion to Applied Regression. (Sage 2019).
Harrell, F. E. & Dupont, C. Harrell Miscellaneous. (2021).
Oksanen, J. et al. Community Ecology Package (2020).
Kassambara, A. Pipe-Friendly Framework for Basic Statistical Tests. (2021).
Korkmaz, S., Goksuluk, D. & Zararsiz, G. MVN: An R Package for Assessing Multivariate Normality. R J. 6, 151–162 (2014).
Google Scholar
Revelle, W. Procedures for Psychological, Psychometric, and Personality Research. (2022).
Weisbecker, V. et al. Individual variation of the masticatory system dominates 3D skull shape in the herbivory-adapted marsupial wombats. Front. Zool. 16, 41. https://doi.org/10.1186/s12983-019-0338-5 (2019).
Google Scholar
Richards, J. D. et al. The biology of banded (Lagostrophus fasciatus) and rufous (Lagorchestes hirsutus) hare-wallabies (Diprotodontia: Macropodidae) on Dorre and Bernier Islands, Western Australia. Wildl. Res. 28, 311–322. https://doi.org/10.1071/WR99109 (2001).
Google Scholar
Ingleby, S. & Westoby, M. Habitat requirements of the spectacled hare-wallaby (Lagorchestes conspicillatus) in the Northern Territory and Western Australia. Wildl. Res. 19, 721–741. https://doi.org/10.1071/WR9920721 (1992).
Google Scholar
Helgen, K. M. & Flannery, T. F. Taxonomy and historical distribution of the wallaby genus Lagostrophus. Aust. J. Zool. 51, 199–212. https://doi.org/10.1071/ZO02078 (2003).
Google Scholar
McDowell, M. C. et al. Morphological and molecular evidence supports specific recognition of the recently extinct Bettongia anhydra (Marsupialia: Macropodidae). J. Mammal. 96, 287–296. https://doi.org/10.1093/jmammal/gyv006 (2015).
Google Scholar
Ingleby, S. Distribution and status of the northern nailtail wallaby, Onychogalea unguífera (Gould, 1841). Wildl. Res. 18, 655–676. https://doi.org/10.1071/WR9910655 (1991).
Google Scholar
Peters, C. et al. Species identification of Australian marsupials using collagen fingerprinting. R. Soc. Open Sci. 8, 211229. https://doi.org/10.1098/rsos.211229 (2021).
Google Scholar
Prince, R. I. T. Banded hare-wallaby. In Mammals of Australia (eds Strahan, R. & van Dyck, S.) 406–408 (Reed New Holland, 2008).
De Deckker, P., Barrows, T. T. & Rogers, J. Land-sea correlations in the Australian region: Post-glacial onset of the monsoon in northwestern Western Australia. Quat. Sci. Rev. 105, 181–194. https://doi.org/10.1016/j.quascirev.2014.09.030 (2014).
Google Scholar
Ward, I. et al. 50,000 years of archaeological site stratigraphy and micromorphology in Boodie Cave, Barrow Island, Western Australia. J. Archaeol. Sci. Rep. 15, 344–369. https://doi.org/10.1016/j.jasrep.2017.08.012 (2017).
Google Scholar
Skippington, J., Manne, T. & Veth, P. Isotopic indications of late Pleistocene and Holocene paleoenvironmental changes at Boodie Cave archaeological site, Barrow Island, Western Australia. Molecules 26, 2585. https://doi.org/10.3390/molecules26092582 (2021).
Google Scholar
Baynes, A. & Jones, B. The mammals of Cape Range Peninsula, north-western Australia. Rec. West. Aust. Mus. Suppl. 45, 207–255 (1993).
Piper, C. & Veth, P. Palaeoecology and sea level changes: Decline of mammal species richness during late Quaternary island formation in the Montebello Islands, north-western Australia. Palaeontol. Electron. 24, a20. https://doi.org/10.26879/1050 (2021).
Google Scholar
Lyman, R. L. The history of ‘laundry lists’ in North American zooarchaeology. J. Anthropol. Archaeol. 39, 42–50. https://doi.org/10.1016/j.jaa.2015.02.003 (2015).
Google Scholar
Guillaud, E., Cornette, R. & Béarez, P. Is vertebral form a valid species-specific indicator for salmonids? The discrimination rate of trout and Atlantic salmon from archaeological to modern times. J. Archaeol. Sci. 65, 84–92. https://doi.org/10.1016/j.jas.2015.11.010 (2016).
Google Scholar
Monchot, H. & Gendron, D. Disentangling long bones of foxes (Vulpes vulpes and Alopex lagopus) from artic archaeological sites. J. Archaeol. Sci. 37, 799–806. https://doi.org/10.1016/j.jas.2009.11.009 (2010).
Google Scholar
Source: Ecology - nature.com