in

Morphometric classification of kangaroo bones reveals paleoecological change in northwest Australia during the terminal Pleistocene

  • Adams, D. C., Rohlf, F. J. & Slice, D. E. A field comes of age: Geometric morphometrics in the 21st century. Hystrix 24, 7–14. https://doi.org/10.4404/hystrix-24.1-6283 (2013).

    Article 

    Google Scholar 

  • Terray, L. et al. Skull morphological evolution in Malagasy endemic Nesomyinae rodents. PLoS ONE 17, e0263045. https://doi.org/10.1371/journal.pone.0263045 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Viacava, P., Baker, A. M., Blomberg, S. P., Phillips, M. J. & Weisbecker, V. Using 3D geometric morphometrics to aid taxonomic and ecological understanding of a recent speciation event within a small Australian marsupial (Antechinus: Dasyuridae). Zool. J. Linn. Soc. 1–16. https://doi.org/10.1093/zoolinnean/zlab048 (2021).

  • Brassard, C. et al. Morphological and functional divergence of the lower jaw between native and invasive red foxes. J. Mamm. Evol. 29, 335–352. https://doi.org/10.1007/s10914-021-09593-2 (2022).

    Article 

    Google Scholar 

  • Boessneck, J. & von den Driesch, A. The significance of measuring animal bones from archaeological sites. In Approaches to Faunal Analysis in the Middle East (eds Meadows, R. H. & Zeder, M. A.) 5–39 (Peabody Museum Bulletin 2, 1978).

    Google Scholar 

  • Serjeantson, D. ‘Science is measurement’; ABMAP, a database of domestic animal bone measurements. Environ. Archaeol. 10, 97–103. https://doi.org/10.1179/env.2005.10.1.97 (2005).

    Article 

    Google Scholar 

  • Haruda, A. F. Separating sheep (Ovis aries L.) and goats (Capra hircus L.) using geometric morphometric methods: An investigation of astragalus morphology from late and final Bronze Age Central Asian contexts. Int. J. Osteoarchaeol. 27, 551–562 (2017).

    Article 

    Google Scholar 

  • Davis, S. J. M. Towards a metrical distinction between sheep and goat astragali. In Economic Zooarchaeology: Studies in Hunting, Herding and Early Agriculture (eds Rowley-Conwy, P. et al.) 93–138 (Oxbow Books Limited, 2019).

    Google Scholar 

  • Jeanjean, M. et al. Sorting the flock: Quantitative identification of sheep and goat from isolated third lower molars and mandibles through geometric morphometrics. J. Archaeol. Sci. 141, 105580. https://doi.org/10.1016/j.jas.2022.105580 (2022).

    Article 

    Google Scholar 

  • Evin, A. et al. Phenotype and animal domestication: A study of dental variation between domestic, wild, captive, hybrid and insular Sus scrofa. BMC Evol. Biol. 15, 1–16. https://doi.org/10.1186/s12862-014-0269-x (2015).

    Article 

    Google Scholar 

  • Harbers, H. et al. The mark of captivity: Plastic responses in the ankle bone of a wild ungulate (Sus scrofa). R. Soc. Open Sci. 7, 192039. https://doi.org/10.1098/rsos.192039 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Drake, A. G., Coquerelle, M. & Colombeau, G. 3D morphometric analysis of fossil canid skulls contradicts the suggested domestication of dogs during the late Paleolithic. Sci. Rep. 5, 8299. https://doi.org/10.1038/srep08299 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ventresca Miller, A. R., Haruda, A., Varfolomeev, V., Goryachev, A. & Makarewicz, C. A. Close management of sheep in ancient Central Asia: Evidence for foddering, transhumance, and extended lambing seasons during the Bronze and Iron Ages. Sci. Technol. Archaeol. Res. 6, 41–60. https://doi.org/10.1080/20548923.2020.1759316 (2020).

  • Duval, C., Lepetz, S., Horard-Herbin, M.-P. & Cucchi, T. Did Romanization impact Gallic pig morphology? New insights from molar geometric morphometrics. J. Archaeol. Sci. 57, 345–354. https://doi.org/10.1016/j.jas.2015.03.004 (2015).

    Article 

    Google Scholar 

  • Davis, S. J. M. Zooarchaeological evidence for Moslem and Christian improvements of sheep and cattle in Portugal. J. Archaeol. Sci. 35, 991–1010. https://doi.org/10.1016/j.jas.2007.07.001 (2008).

    Article 

    Google Scholar 

  • Samper Carro, S. C., Louys, J. & Oonnor, S. Shape does matter: A geometric morphometric approach to shape variation in Indo-Pacific fish vertebrae for habitat identification. J. Archaeol. Sci. 99, 124–134. https://doi.org/10.1016/j.jas.2018.09.010 (2018).

  • Stimpson, C. M. A 48,000 year record of swiftlets (Aves: Apodidae) in North-western Borneo: Morphometric identifications and palaeoenvironmental implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 374, 132–143. https://doi.org/10.1016/j.palaeo.2013.01.011 (2013).

    Article 

    Google Scholar 

  • Medina, M. E., Picasso, M. B. J., Campos, M. R. & Avila, N. C. Tarsometatarsus, eggshells, and the species level identification of large-sized flightless birds from Boyo Paso 2 (Sierras of Córdoba, Argentina). Int. J. Osteoarchaeol. 29, 584–594. https://doi.org/10.1002/oa.2754 (2019).

    Article 

    Google Scholar 

  • Weaver, L. N. & Grossnickle, D. M. Functional diversity of small-mammal postcrania is linked to both substrate preference and body size. Curr. Zool. 66, 539–553. https://doi.org/10.1093/cz/zoaa057 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, X., Milne, N. & O’Higgins, P. Morphological variation of the thoracolumbar vertebrae in Macropodidae and its functional relevance. J. Morphol. 266, 167–181. https://doi.org/10.1002/jmor.10370 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Etienne, C., Filippo, A., Cornette, R. & Houssaye, A. Effect of mass and habitat on the shape of limb long bones: A morpho-functional investigation on Bovidae ( Mammalia: Cetartiodactyla ). J. Anat. 238, 886–904. https://doi.org/10.1111/joa.13359 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Bassarova, M., Janis, C. M. & Archer, M. The calcaneum-on the heels of marsupial locomotion. J. Mamm. Evol. 16, 1–23. https://doi.org/10.1007/s10914-008-9093-7 (2009).

    Article 

    Google Scholar 

  • Janis, C. M., Buttrill, K. & Figueirido, B. Locomotion in extinct giant kangaroos: Were Sthenurines hop-less monsters?. PLoS ONE 9, e109888. https://doi.org/10.1371/journal.pone.0109888 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Argot, C. Functional-adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J. Morphol. 253, 76–108. https://doi.org/10.1002/jmor.1114 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Mein, E. & Manne, T. Identifying marsupials from Australian archaeological sites: Current methodological challenges and opportunities in zooarchaeological practice. Archaeol. Ocean. 56, 133–141. https://doi.org/10.1002/arco.5234 (2021).

    Article 

    Google Scholar 

  • Woinarski, J. C. Z. et al. Reading the black book: The number, timing, distribution and causes of listed extinctions in Australia. Biol. Conserv. 239, 108261. https://doi.org/10.1016/j.biocon.2019.108261 (2019).

    Article 

    Google Scholar 

  • Garvey, J. Preliminary zooarchaeological interpretations from Kutikina Cave, south-west Tasmania. Aust. Aborig. Stud. 1, 57–62 (2006).

    Google Scholar 

  • Veth, P. et al. Montebello Islands Archaeology: Late Quaternary Foragers on an Arid Coastline. (BAR Publishing, 2007).

  • Morse, K. Who can see the sea? Prehistoric Aboriginal occupation of the Cape Range peninsula. Rec. West. Aust. Mus. Suppl. 45, 227–242 (1993).

    Google Scholar 

  • Warburton, N. M. & Prideaux, G. Functional pedal morphology of the extinct tree-kangaroo Bohra (Diprotodontia: Macropodidae). In Macropods: The Biology of Kangaroos, Wallabies, and Rat-Kangaroos (eds Coulson, G. & Eldridge, M.) 137–151 (CSIRO Publishing, 2010).

    Google Scholar 

  • Bishop, N. Functional anatomy of the macropodid pes. Proc. Linn. Soc. New South Wales 117, 17–50 (1997).

    ADS 

    Google Scholar 

  • Szalay, F. S. Evolutionary History of the Marsupials and an Analysis of Osteological Characters. (Cambridge University Press, 1994).

  • Veth, P. et al. Early human occupation of a maritime desert, Barrow Island, north-west Australia. Quat. Sci. Rev. 168, 19–29. https://doi.org/10.1016/j.quascirev.2017.05.002 (2017).

    Article 
    ADS 

    Google Scholar 

  • Moro, D. & Lagdon, R. History and environment of Barrow Island. Rec. West. Aust. Mus. Suppl. 83, 1–8. https://doi.org/10.18195/issn.0313-122x.83.2013.001-008 (2013).

  • Veth, P., Ditchfield, K. & Hook, F. Maritime deserts of the Australian northwest. Aust. Archaeol. 79, 156–166. https://doi.org/10.1080/03122417.2014.11682032 (2014).

    Article 

    Google Scholar 

  • Morse, K. Coastwatch: Pleistocene resource use on the Cape Range peninsula. In Australian Coastal Archaeology (eds Hall, J. & McNiven, I. J.) 73–78 (ANH Publications, 1999).

    Google Scholar 

  • Baynes, A. & McDowell, M. C. The original mammal fauna of the Pilbara biogeographic region of north-western Australia. Rec. West. Aust. Mus. Suppl. 78, 285–298. https://doi.org/10.18195/issn.0313-122x.78(1).2010.285-298 (2010).

    Article 

    Google Scholar 

  • Shortridge, G. C. An account of the geographical distribution of the marsupials and monotremes of south-west Australia, having special reference to the specimens collected during the Balston expedition of 1904–1907. Proc. Zool. Soc. Lond. 74, 803–848. https://doi.org/10.1111/j.1469-7998.1910.tb06974.x (1909).

    Article 

    Google Scholar 

  • Ballard, C. K. Use of Epiphyseal and Total Fusion Scores as Methods of Age Estimation and Evaluation of Morphological Indices in the Macropodidae. (Northern Illinois University, 2007).

  • Rose, R. W. Age estimation of the Tasmanian bettong (Bettongia gaimardi) (Marsupialia: Potoroidae). Wildl. Res. 16, 251–261. https://doi.org/10.1071/WR9890251 (1989).

    Article 

    Google Scholar 

  • Johnson, P. M. & Delean, S. Reproduction in the northern bettong, Bettongia tropica Wakefield (Marsupialia: Potoroidae), in captivity, with age estimation and development of pouch young. Wildl. Res. 28, 79–85. https://doi.org/10.1071/WR00007 (2001).

    Article 

    Google Scholar 

  • Thompson, C. K., Wayne, A. F., Godfrey, S. S. & Andrew Thompson, R. C. Survival, age estimation and sexual maturity of pouch young of the brush-tailed bettong (Bettongia penicillata) in captivity. Aust. Mammal. 37, 29–38. https://doi.org/10.1071/AM14025 (2015).

    Article 

    Google Scholar 

  • Janis, C. M. Correlation of cranial and dental variables with dietary preferences in mammals: A comparison of macropodoids and ungulates. Mem. – Queensl. Museum 28, 349–366 (1990).

    Google Scholar 

  • Sharman, G. B., Frith, H. J. & Calaby, J. H. Growth of the pouch young, tooth eruption and age determination in the red kangaroo, Megaleia rufa. CSIRO Wildl. Res. 9, 20–49. https://doi.org/10.1071/cwr9640020 (1964).

    Article 

    Google Scholar 

  • Newsome, A. E., Merchant, J. C., Bolton, B. L. & Dudziński, M. L. Sexual dimorphism in molar progression and eruption in the agile wallaby. Wildl. Res. 4, 1–5. https://doi.org/10.1071/WR9770001 (1977).

    Article 

    Google Scholar 

  • Poole, W. E., Merchant, J. C., Carpenter, S. M. & Calaby, J. H. Reproduction, growth and age determination in the yellow-footed rock-wallaby Petrogale xanthopus Gray, in captivity. Wildl. Res. 12, 127–136. https://doi.org/10.1071/WR9850127 (1985).

    Article 

    Google Scholar 

  • Delaney, R. & Marsh, H. Estimating the age of wild rock-wallabies by dental radiography: A basis for quantifying the age structure of a discrete colony of Petrogale assimilis. Wildl. Res. 22, 547–559. https://doi.org/10.1071/WR9950547 (1995).

    Article 

    Google Scholar 

  • Kido, N., Tanaka, S., Wada, Y., Sato, S. & Omiya, T. Molar eruption and identification of the eastern grey kangaroo (Macropus giganteus) at different ages. J. Vet. Med. Sci. 80, 648–652. https://doi.org/10.1292/jvms.17-0069 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koo, T. K. & Li, M. Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15, 155–163. https://doi.org/10.1016/j.jcm.2016.02.012 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Claude, J. Log-shape ratios, Procrustes superimposition, elliptic Fourier analysis: Three worked examples in R. Hystrix 24, 94–102. https://doi.org/10.4404/hystrix-24.1-6316 (2013).

    Article 

    Google Scholar 

  • Mosimann, J. E. Size allometry: Size and shape variables with characterizations of the Lognormal and generalized gamma distributions. J. Am. Stat. Assoc. 65, 930–945. https://doi.org/10.2307/2284599 (1970).

    Article 
    MATH 

    Google Scholar 

  • Kovarovic, K., Aiello, L. C., Cardini, A. & Lockwood, C. A. Discriminant function analyses in archaeology: Are classification rates too good to be true ?. J. Archaeol. Sci. 38, 3006–3018. https://doi.org/10.1016/j.jas.2011.06.028 (2011).

    Article 

    Google Scholar 

  • Ramayah, T. et al. Discriminant analysis: An illustrated example. Afr. J. Bus. Manag. 4, 1654–1667 (2010).

    Google Scholar 

  • Sanchez, P. M. The unequal group size problem in discriminant analysis. J. Acad. Mark. Sci. 2, 629–633. https://doi.org/10.1007/BF02729456 (1974).

    Article 

    Google Scholar 

  • Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. Multivariate Data Analysis. (Cengage, 2018).

  • Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002).

  • Fox, J. & Weisberg, S. An R Companion to Applied Regression. (Sage 2019).

  • Harrell, F. E. & Dupont, C. Harrell Miscellaneous. (2021).

  • Oksanen, J. et al. Community Ecology Package (2020).

  • Kassambara, A. Pipe-Friendly Framework for Basic Statistical Tests. (2021).

  • Korkmaz, S., Goksuluk, D. & Zararsiz, G. MVN: An R Package for Assessing Multivariate Normality. R J. 6, 151–162 (2014).

    Article 

    Google Scholar 

  • Revelle, W. Procedures for Psychological, Psychometric, and Personality Research. (2022).

  • Weisbecker, V. et al. Individual variation of the masticatory system dominates 3D skull shape in the herbivory-adapted marsupial wombats. Front. Zool. 16, 41. https://doi.org/10.1186/s12983-019-0338-5 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Richards, J. D. et al. The biology of banded (Lagostrophus fasciatus) and rufous (Lagorchestes hirsutus) hare-wallabies (Diprotodontia: Macropodidae) on Dorre and Bernier Islands, Western Australia. Wildl. Res. 28, 311–322. https://doi.org/10.1071/WR99109 (2001).

    Article 
    ADS 

    Google Scholar 

  • Ingleby, S. & Westoby, M. Habitat requirements of the spectacled hare-wallaby (Lagorchestes conspicillatus) in the Northern Territory and Western Australia. Wildl. Res. 19, 721–741. https://doi.org/10.1071/WR9920721 (1992).

    Article 

    Google Scholar 

  • Helgen, K. M. & Flannery, T. F. Taxonomy and historical distribution of the wallaby genus Lagostrophus. Aust. J. Zool. 51, 199–212. https://doi.org/10.1071/ZO02078 (2003).

    Article 

    Google Scholar 

  • McDowell, M. C. et al. Morphological and molecular evidence supports specific recognition of the recently extinct Bettongia anhydra (Marsupialia: Macropodidae). J. Mammal. 96, 287–296. https://doi.org/10.1093/jmammal/gyv006 (2015).

    Article 

    Google Scholar 

  • Ingleby, S. Distribution and status of the northern nailtail wallaby, Onychogalea unguífera (Gould, 1841). Wildl. Res. 18, 655–676. https://doi.org/10.1071/WR9910655 (1991).

    Article 

    Google Scholar 

  • Peters, C. et al. Species identification of Australian marsupials using collagen fingerprinting. R. Soc. Open Sci. 8, 211229. https://doi.org/10.1098/rsos.211229 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prince, R. I. T. Banded hare-wallaby. In Mammals of Australia (eds Strahan, R. & van Dyck, S.) 406–408 (Reed New Holland, 2008).

    Google Scholar 

  • De Deckker, P., Barrows, T. T. & Rogers, J. Land-sea correlations in the Australian region: Post-glacial onset of the monsoon in northwestern Western Australia. Quat. Sci. Rev. 105, 181–194. https://doi.org/10.1016/j.quascirev.2014.09.030 (2014).

    Article 
    ADS 

    Google Scholar 

  • Ward, I. et al. 50,000 years of archaeological site stratigraphy and micromorphology in Boodie Cave, Barrow Island, Western Australia. J. Archaeol. Sci. Rep. 15, 344–369. https://doi.org/10.1016/j.jasrep.2017.08.012 (2017).

    Article 

    Google Scholar 

  • Skippington, J., Manne, T. & Veth, P. Isotopic indications of late Pleistocene and Holocene paleoenvironmental changes at Boodie Cave archaeological site, Barrow Island, Western Australia. Molecules 26, 2585. https://doi.org/10.3390/molecules26092582 (2021).

    Article 
    CAS 

    Google Scholar 

  • Baynes, A. & Jones, B. The mammals of Cape Range Peninsula, north-western Australia. Rec. West. Aust. Mus. Suppl. 45, 207–255 (1993).

    Google Scholar 

  • Piper, C. & Veth, P. Palaeoecology and sea level changes: Decline of mammal species richness during late Quaternary island formation in the Montebello Islands, north-western Australia. Palaeontol. Electron. 24, a20. https://doi.org/10.26879/1050 (2021).

    Article 

    Google Scholar 

  • Lyman, R. L. The history of ‘laundry lists’ in North American zooarchaeology. J. Anthropol. Archaeol. 39, 42–50. https://doi.org/10.1016/j.jaa.2015.02.003 (2015).

    Article 

    Google Scholar 

  • Guillaud, E., Cornette, R. & Béarez, P. Is vertebral form a valid species-specific indicator for salmonids? The discrimination rate of trout and Atlantic salmon from archaeological to modern times. J. Archaeol. Sci. 65, 84–92. https://doi.org/10.1016/j.jas.2015.11.010 (2016).

    Article 

    Google Scholar 

  • Monchot, H. & Gendron, D. Disentangling long bones of foxes (Vulpes vulpes and Alopex lagopus) from artic archaeological sites. J. Archaeol. Sci. 37, 799–806. https://doi.org/10.1016/j.jas.2009.11.009 (2010).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Presence of algal symbionts affects denitrifying bacterial communities in the sea anemone Aiptasia coral model

    South African Lagerstätte reveals middle Permian Gondwanan lakeshore ecosystem in exquisite detail