in

Renewal of planktonic foraminifera diversity after the Cretaceous Paleogene mass extinction by benthic colonizers

  • Hart, M. B. et al. The search for the origin of the planktic foraminifera. J. Geol. Soc. Lond. 160, 341–343 (2003).

    Article 

    Google Scholar 

  • Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Gradstein, F., Waskowska, A. & Glinskikh, L. The first 40 million years of planktonic foraminifera. Geosci 11, 1–25 (2021).

    Article 

    Google Scholar 

  • Ujiié, Y., Kimoto, K. & Pawlowski, J. Molecular evidence for an independent origin of modern triserial planktonic foraminifera from benthic ancestors. Mar. Micropaleontol. 69, 334–340 (2008).

    Article 
    ADS 

    Google Scholar 

  • Darling, K. F. et al. Surviving mass extinction by bridging the benthic/planktic divide. Proc. Natl Acad. Sci. USA 106, 12629–33 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kucera, M. et al. Caught in the act: anatomy of an ongoing benthic–planktonic transition in a marine protist. J. Plankton Res. 39, 436–449 (2017).

    Google Scholar 

  • Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–352 (2011).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change: thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 403–429 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pawlowski, J., Holzmann, M. & Tyszka, J. New supraordinal classification of foraminifera: molecules meet morphology. Mar. Micropaleontol. 100, 1–10 (2013).

    Article 
    ADS 

    Google Scholar 

  • Lecroq, B. et al. Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc. Natl Acad. Sci. USA 108, 13177–13182 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pawlowski, J. et al. The evolution of early foraminifera. Proc. Natl Acad. Sci. USA 100, 11494–8 (2003).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Vachard, D. Macroevolution and biostratigraphy of paleozoic foraminifers. in Stratigraphy and Timescales (Ed. Montenari, M.) Vol. 1, 257–323 (Academic Press, 2016).

  • Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Holzmann, M. & Pawlowski, J. An updated classification of rotaliid foraminifera based on ribosomal DNA phylogeny. Mar. Micropaleontol. 132, 18–34 (2017).

    Article 
    ADS 

    Google Scholar 

  • John, A. W. G. The regular occurrence of Reophax Scottie Chaster, a benthic foraminiferan, in plankton samples from the North Sea. J. Micropalaeontol. 6, 61–63 (1987).

    Article 

    Google Scholar 

  • Kucera, M. et al. Caught in the act: anatomy of an ongoing benthic-planktonic transition in a marine protist. J. Plankton Res. 39, 436–449 (2017).

  • Darling, K. F., Wade, C. M., Kroon, D. & Brown, A. J. L. Planktic foraminiferal molecular evolution and their polyphyletic origins from benthic taxa. Mar. Micropaleontol. 30, 251–266 (1997).

    Article 
    ADS 

    Google Scholar 

  • Church, S. H., Ryan, J. F. & Dunn, C. W. Automation and evaluation of the SOWH test with SOWHAT. Syst. Biol. 64, 1048–1058 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Pawlowski, J. et al. Extreme differences in rates of molecular evolution of foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record. Mol. Biol. Evol. 14, 498–505 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Peijnenburg, K. T. C. A. et al. The origin and diversification of pteropods precede past perturbations in the Earth’s carbon cycle. Proc. Natl Acad. Sci. USA 117, 25609–25617 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • O’Brien, C. L. et al. Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth-Sci. Rev. 172, 224–247 (2017).

    Article 
    ADS 

    Google Scholar 

  • Olsson, R. K., Berggren, W. A., Hemleben, C. & Huber, B. T. Atlas of Paleocene planktonic foraminifera. Smithson. Contrib. Paleobiol. 1–252 https://doi.org/10.5479/si.00810266.85.1 (1999).

  • Arenillas, I. & Arz, J. A. Benthic origin and earliest evolution of the first planktonic foraminifera after the Cretaceous/Palaeogene boundary mass extinction. Hist. Biol. 29, 25–42 (2017).

    Article 

    Google Scholar 

  • Huber, B. T., Petrizzo, M. R. & MacLeod, K. G. Planktonic foraminiferal endemism at southern high latitudes following the terminal cretaceous extinction. J. Foraminifer. Res. 50, 382–402 (2020).

    Article 

    Google Scholar 

  • Arenillas, I., Arz, J. A. & Gilabert, V. An updated suprageneric classification of planktic foraminifera after growing evidence of multiple benthic-planktic transitions. Spanish J. Palaeontol. https://doi.org/10.7203/sjp.22189 (2022).

  • Culver, S. J. Benthic foraminifera across the Cretaceous–Tertiary (K–T) boundary: a review. Mar. Micropaleontol. 47, 177–226 (2003).

    Article 
    ADS 

    Google Scholar 

  • Widmark, J. G. V. & Malmgren, B. A. Benthic foraminiferal changes across the Cretaceous/Tertiary boundary in the deep sea; DSDP sites 525, 527, and 465. J. Foraminifer. Res. 22, 81–113 (1992).

    Article 

    Google Scholar 

  • Rigaud, S., Martini, R. & Vachard, D. Early evolution and new classification of the order Robertinida (foraminifera). J. Foraminifer. Res. 45, 3–28 (2015).

    Article 

    Google Scholar 

  • Rigaud, S., Granier, B. & Masse, J. P. Aragonitic foraminifers: an unsuspected wall diversity. J. Syst. Palaeontol. 19, 461–488 (2021).

    Article 

    Google Scholar 

  • Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Morard, R. et al. PFR2: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution. Mol. Ecol. Resour. 15, 1472–1485 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Morard, R. et al. Genetic and morphological divergence in the warm-water planktonic foraminifera genus Globigerinoides. PLoS ONE 14, 1–30 (2019).

    Article 

    Google Scholar 

  • Morard, R., Vollmar, N. M., Greco, M. & Kucera, M. Unassigned diversity of planktonic foraminifera from environmental sequencing revealed as known but neglected species. PLoS ONE 14, e0213936 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinforma. 10, 1–9 (2009).

    Article 

    Google Scholar 

  • R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

  • Liaw, A. & Wiener, M. Classification and Regression by randomForest. R. N. 2, 18–22 (2002).

    Google Scholar 

  • Lang, M. et al. mlr3: a modern object-oriented machine learning framework in R. J. Open Source Softw. 4, 1903 (2019).

    Article 
    ADS 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Darriba, D. et al. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37, 291–294 (2020).

    Article 
    MathSciNet 
    PubMed 
    CAS 

    Google Scholar 

  • Kozlov, A. M. et al. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, 293–296 (2021).

    Article 

    Google Scholar 

  • Löytynoja, A. & Goldman, N. WebPRANK: a phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinform. 11, 1–7 (2010).

  • Ronquist, F. et al. MrBayes 3. 2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Dos Reis, M., Donoghue, P. C. J. & Yang, Z. Bayesian molecular clock dating of species divergences in the genomics era. Nat. Rev. Genet. 17, 71–80 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Song, H., Tong, J. & Chen, Z. Q. Evolutionary dynamics of the Permian-Triassic foraminifer size: Evidence for Lilliput effect in the end-Permian mass extinction and its aftermath. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 98–110 (2011).

    Article 

    Google Scholar 

  • Copestake, P. & Johnson, B. Lower Jurassic Foraminifera from the Llanbedr (Mochras Farm) Borehole, North Wales, UK. Monogr. Palaeontogr. Soc. 167, 1–403 (2013).

    Article 

    Google Scholar 

  • Rigaud, S. & Blau, J. New Robertinid Foraminifers from the Early Jurassic of Adnet, Austria and Their Evolutionary Importance. Acta Palaeontol. Pol. 61, 721–734 (2016).

    Article 

    Google Scholar 

  • Boudagher-fadel, M. K. Evolution and Geological Significance of Larger Benthic Foraminifera. Evolution and Geological Significance of Larger Benthic Foraminifera (UCL Press, 2018).

  • Piuz, A. & Meister, C. Cenomanian rotaliids (Foraminiferida) from Oman and Morocco. Swiss J. Palaeontol. 132, 81–97 (2013).

    Article 

    Google Scholar 

  • Kucera, M. & Schönfeld, J. The origin of modern oceanic foraminiferal faunas and Neogene climate change. in Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies. (ed. The Micropalaeontological Society, S. P.) 409–425 (The Geological Society, 2007).

  • Drummond, A. J. & Suchard, M. A. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 8, 114 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rambaut, A. FigTree version 1.3.1. http://tree.bio.ed.ac.uk (2009).

  • Groussin, M., Pawlowski, J. & Yang, Z. Bayesian relaxed clock estimation of divergence times in foraminifera. Mol. Phylogenet. Evol. 61, 157–166 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Loeblich Jr, A. R. & Tappan, H. Foraminiferal Genera and Their Classification (Springer, 1988).


  • Source: Ecology - nature.com

    Tube length of chironomid larvae as an indicator for dissolved oxygen in water bodies

    Machinery of the state