Henry, L.-A. & Roberts, J. M. Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep Sea Res. I(54), 654–672 (2007).
Buhl-Mortensen, L. et al. First observations of the structure and megafaunal community of a large Lophelia reef on the Ghanaian shelf (the Gulf of Guinea). Deep Sea Res. II(137), 148–156 (2017).
Price, D. M. et al. Using 3D photogrammetry from ROV video to quantify cold-water coral reef structural complexity and investigate its influence on biodiversity and community assemblage. Coral Reefs 38, 1007–1021 (2019).
Roberts, J. M., Wheeler, A. J. & Freiwald, A. Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312, 543–547 (2006).
Google Scholar
Henry, L. A., Nizinski, M. S. & Ross, S. W. Occurrence and biogeography of hydroids (Cnidaria: Hydrozoa) from deep-water coral habitats off the southeastern United States. Deep. Res. I(55), 788–800 (2008).
Henry, L.-A. & Roberts, J. M. Global Biodiversity in Cold-Water Coral Reef Ecosystems. In Marine Animal Forests (eds Rossi, S. et al.) 1–21 (Springer, 2016). https://doi.org/10.1007/978-3-319-17001-5_6-1.
Google Scholar
De Mol, B. et al. Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Mar. Geol. 188, 193–231 (2002).
Dorschel, B., Hebbeln, D., Rüggeberg, A., Dullo, W. C. & Freiwald, A. Growth and erosion of a cold-water coral covered carbonate mound in the Northeast Atlantic during the Late Pleistocene and Holocene. Earth Planet. Sci. Lett. 233, 33–44 (2005).
Google Scholar
Hebbeln, D., Van Rooij, D. & Wienberg, C. Good neighbours shaped by vigorous currents: Cold-water coral mounds and contourites in the North Atlantic. Mar. Geol. 378, 171–185 (2016).
Wheeler, A. J. et al. Morphology and environment of cold-water coral carbonate mounds on the NW European margin. Int. J. Earth Sci. 96, 37–56 (2007).
Google Scholar
Lo Iacono, C., Savini, A. & Basso, D. Cold-water carbonate bioconstructions. in Submarine Geomorphology, 425–455 (Springer, 2018).
Hebbeln, D. Highly variable submarine landscapes in the Alborán sea created by cold-water corals. In Mediterranean Cold-Water Corals: Past, Present and Future (eds Orejas, C. & Jiménez, C.) 61–65 (Springer, 2019). https://doi.org/10.1007/978-3-319-91608-8_8.
Google Scholar
Addamo, A. M. et al. Merging scleractinian genera: The overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol. Biol. 16, 1–17 (2016).
Wienberg, C. & Titschack, J. Framework-forming scleractinian cold-water corals through space and time: A late quaternary north atlantic perspective. in Marine Animal Forests 1–34 (Springer, 2017). https://doi.org/10.1007/978-3-319-17001-5_16-1
Maier, C., Weinbauer, M. G. & Gattuso, J.-P. Fate of mediterranean scleractinian cold-water corals as a result of global climate change: A synthesis. In Mediterranean Cold-Water Corals: Past, Present and Future (eds Orejas, C. & Jiménez, C.) 517–529 (Springer, 2019). https://doi.org/10.1007/978-3-319-91608-8_44.
Google Scholar
Reynaud, S. & Ferrier-Pagès, C. Biology and ecophysiology of mediterranean cold-water corals. In Mediterranean Cold-Water Corals: Past, Present and Future (eds Orejas, C. & Jiménez, C.) 391–404 (Springer, 2019). https://doi.org/10.1007/978-3-319-91608-8_35.
Google Scholar
Hennige, S. J. et al. Using the Goldilocks principle to model coral ecosystem engineering. Proc. R. Soc. B Biol. Sci. 288, 20211260 (2021).
Google Scholar
LoIacono, C. et al. The West Melilla cold water coral mounds, Eastern Alboran Sea: Morphological characterization and environmental context. Deep Sea Res. II(99), 316–326 (2014).
Mortensen, P. B., Hovland, T., Fosså, J. H. & Furevik, D. M. Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. J. Mar. Biol. Assoc. 81, 581–597 (2001).
Mienis, F. et al. Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE Rockall Trough Margin, NE Atlantic. Ocean. Deep. Res. I(54), 1655–1674 (2007).
Davies, A. J. et al. Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef Complex. Limnol. Oceanogr. 54, 620–629 (2009).
Mohn, C. et al. Linking benthic hydrodynamics and cold-water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic. Prog. Oceanogr. 122, 92–104 (2014).
Mienis, F. et al. Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic. Biogeosciences 11, 2543–2560 (2014).
Grasmueck, M. et al. Autonomous underwater vehicle (AUV) mapping reveals coral mound distribution, morphology, and oceanography in deep water of the Straits of Florida. Geophys. Res. Lett. 33, L23616 (2006).
Correa, T. B. S., Eberli, G. P., Grasmueck, M., Reed, J. K. & Correa, A. M. S. Genesis and morphology of cold-water coral ridges in a unidirectional current regime. Mar. Geol. 326–328, 14–27 (2012).
Lavaleye, M. et al. Cold-water corals on the tisler reef: Preliminary observations on the dynamic reef environment. Oceanography 22, 76–84 (2009).
Mortensen, P. B. et al. Seascape description of anunusual coral reef area off Vesteraålen, Northern Norway. in 4th International Symposium on deep-sea corals. (2008).
Cathalot, C. et al. Cold-water coral reefs and adjacent sponge grounds: Hotspots of benthic respiration and organic carbon cycling in the deep sea. Front. Mar. Sci. 2, 37 (2015).
Buhl-Mortensen, P. & Sundahl, H. Environmental control of cold-water coral reef morphology. in 7th International Symposium on deep-sea corals. (2019).
van der Kaaden, A.-S., van Oevelen, D., Rietkerk, M., Soetaert, K. & van de Koppel, J. Spatial self-organization as a new perspective on cold-water coral mound development. Front. Mar. Sci. 7, 631 (2020).
Buhl-Mortensen, L. et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31, 21–50 (2010).
Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).
Mienis, F., Bouma, T., Witbaard, R., van Oevelen, D. & Duineveld, G. Experimental assessment of the effects of coldwater coral patches on water flow. Mar. Ecol. Prog. Ser. 609, 101–117 (2019).
Google Scholar
van der Kaaden, A.-S. et al. Feedbacks between hydrodynamics and cold-water coral mound development. Deep Sea Res. I 178, 103641 (2021).
Mortensen, P. B., Hovland, M., Brattegard, T. & Farestveit, R. Deep water bioherms of the scleractinian coral Lophelia pertusa (L.) at 64° n on the norwegian shelf: Structure and associated megafauna. Sarsia 80, 145–158 (1995).
Corbera, G. et al. Ecological characterisation of a Mediterranean cold-water coral reef: Cabliers Coral Mound Province (Alboran Sea, western Mediterranean). Prog. Oceanogr. 175, 245–262 (2019).
Kano, A. et al. Age constraints on the origin and growth history of a deep-water coral mound in the northeast Atlantic drilled during Integrated Ocean Drilling Program Expedition 307. Geology 35, 1051–1054 (2007).
Google Scholar
Douarin, M. et al. Growth of north-east Atlantic cold-water coral reefs and mounds during the Holocene: A high resolution U-series and 14C chronology. Earth Planet. Sci. Lett. 375, 176–187 (2013).
Google Scholar
Orejas, C., Gori, A. & Gili, J. M. Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria. Coral Reefs 27, 255–255 (2008).
Orejas, C. et al. Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Mar. Ecol. Prog. Ser. 429, 57–65 (2011).
Lartaud, F., Mouchi, V., Chapron, L., Meistertzheim, A.-L. & Le Bris, N. Growth Patterns of Mediterranean Calcifying Cold-Water Corals. in Mediterranean Cold-Water Corals: Past, Present and Future 405–422 (2019). https://doi.org/10.1007/978-3-319-91608-8_36.
Büscher, J. V. et al. In situ growth and bioerosion rates of Lophelia pertusa in a Norwegian fjord and open shelf cold-water coral habitat. PeerJ 2019, 1–10 (2019).
Form, A. U. & Riebesell, U. Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob. Chang. Biol. 18, 843–853 (2012).
Maier, C., Watremez, P., Taviani, M., Weinbauer, M. G. & Gattuso, J. P. Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc. R. Soc. B Biol. Sci. 279, 1716–1723 (2012).
Google Scholar
Lunden, J. J., McNicholl, C. G., Sears, C. R., Morrison, C. L. & Cordes, E. E. Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Front. Mar. Sci. 1, 78 (2014).
Gori, A., Reynaud, S., Orejas, C., Gili, J. M. & Ferrier-Pagès, C. Physiological performance of the cold-water coral Dendrophyllia cornigera reveals its preference for temperate environments. Coral Reefs 33, 665–674 (2014).
Huvenne, V. A. I. et al. Sediment dynamics and palaeo-environmental context at key stages in the Challenger cold-water coral mound formation: Clues from sediment deposits at the mound base. Deep. Res. I(56), 2263–2280 (2009).
Bartzke, G. et al. Investigating the prevailing hydrodynamics around a cold-water coral colony using a physical and a numerical approach. Front. Mar. Sci. 8, 3304 (2021).
Downs, C. A. et al. Cellular diagnostics and coral health: Declining coral health in the Florida Keys. Mar. Pollut. Bull. 51, 558–569 (2005).
Google Scholar
Ayala, A., Muñoz, M. F. & Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Long. 2014, 1–10 (2014).
Google Scholar
Oh, T. J., Kim, I. G., Park, S. Y., Kim, K. C. & Shim, H. W. NAD-dependent malate dehydrogenase protects against oxidative damage in Escherichia coli K-12 through the action of oxaloacetate. Environ. Toxicol. Pharmacol. 11, 9–14 (2002).
Google Scholar
Dade, L., Hogg, A. & Boudreau, B. Physics of Flow Above the Sediment-Water Interface (Oxford University Press, 2001).
Gass, S. E. & Roberts, J. M. The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: Colony growth, recruitment and environmental controls on distribution. Mar. Pollut. Bull. 52, 549–559 (2006).
Google Scholar
Brooke, S. & Young, C. M. In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 397, 153–161 (2009).
Lartaud, F. et al. A new approach for assessing cold-water coral growth in situ using fluorescent calcein staining. Aquat. Living Resour. 26, 187–196 (2013).
Sebens, K. P., Witting, J. & Helmuth, B. Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelotti). J. Exp. Mar. Bio. Ecol. 211, 1–28 (1997).
Sebens, K. P., Grace, S. P., Helmuth, B., Maney, E. J. Jr. & Miles, J. S. Water flow and prey capture by three scleractinian corals, Madracis mirabilis, Montastrea cavernosa and Porites porites, in a field enclosure. Mar. Biol. 131, 347–360 (1998).
Purser, A., Larsson, A. I., Thomsen, L. & van Oevelen, D. The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates. J. Exp. Mar. Bio. Ecol. 395, 55–62 (2010).
Orejas, C. et al. The effect of flow speed and food size on the capture efficiency and feeding behaviour of the cold-water coral Lophelia pertusa. J. Exp. Mar. Bio. Ecol. 481, 34–40 (2016).
Duineveld, G. C. A. et al. Spatial and tidal variation in food supply to shallow cold-water coral reefs of the Mingulay Reef complex (Outer Hebrides, Scotland). Mar. Ecol. Prog. Ser. 444, 97–115 (2012).
De Clippele, L. H. et al. The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef, Norway. Coral Reefs 37, 253–266 (2018).
Google Scholar
Jokiel, P. L. Effects of water motion on reef corals. J. Exp. Mar. Biol. Ecol. 35, 87–97 (1978).
Shashar, N., Cohen, Y. & Loya, Y. Extreme diel fluctuations of oxygen in diffusive boundary layers surrounding stony corals. Biol. Bull. 185, 455–461 (1993).
Google Scholar
Finelli, C. M., Helmuth, B. S. T., Pentcheff, N. D. & Wethey, D. S. Water flow influences oxygen transport and photosynthetic efficiency in corals. Coral Reefs 25, 47–57 (2006).
Atkinson, M. J. & Bilger, R. W. Effects of water velocity on phosphate uptake in coral reef-hat communities. Limnol. Oceanogr. 37, 273–279 (1992).
Google Scholar
Mass, T., Genin, A., Shavit, U., Grinstein, M. & Tchernov, D. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proc. Natl. Acad. Sci. 107, 2527–2531 (2010).
Google Scholar
Comeau, S., Edmunds, P. J., Lantz, C. A. & Carpenter, R. C. Water flow modulates the response of coral reef communities to ocean acidification. Sci. Rep. 4, 6681 (2014).
Google Scholar
Larsson, A., Lundälv, T. & van Oevelen, D. Skeletal growth, respiration rate and fatty acid composition in the cold-water coral Lophelia pertusa under varying food conditions. Mar. Ecol. Prog. Ser. 483, 169–184 (2013).
Baussant, T., Nilsen, M., Ravagnan, E., Westerlund, S. & Ramanand, S. Physiological responses and lipid storage of the coral Lophelia pertusa at varying food density. J. Toxicol. Environ. Health. A 80, 266–284 (2017).
Google Scholar
Bouma, T. J. et al. Spatial flow and sedimentation patterns within patches of epibenthic structures: Combining field, flume and modelling experiments. Cont. Shelf Res. 27, 1020–1045 (2007).
Brooke, S. D., Holmes, M. W. & Young, C. M. Sediment tolerance of two different morphotypes of the deep-sea coral Lophelia pertusa from the Gulf of Mexico. Mar. Ecol. Prog. Ser. 390, 137–144 (2009).
Bøe, R. et al. Giant sandwaves in the Hola glacial trough off Vesterålen, North Norway. Mar. Geol. 267, 36–54 (2009).
Huvenne, V. A. I. et al. The Magellan mound province in the Porcupine Basin. Int. J. Earth Sci. 96, 85–101 (2007).
Google Scholar
De Haas, H. et al. Morphology and sedimentology of (clustered) cold-water coral mounds at the south Rockall Trough margins, NE Atlantic Ocean. Facies 55, 1–26 (2009).
Lim, A., Huvenne, V. A. I., Vertino, A., Spezzaferri, S. & Wheeler, A. J. New insights on coral mound development from groundtruthed high-resolution ROV-mounted multibeam imaging. Mar. Geol. 403, 225–237 (2018).
Olariaga, A., Gori, A., Orejas, C. & Gili, J. M. Development of an autonomous aquarium system for maintaining deep corals. Oceanography 22, 44–45 (2009).
Davies, A. J. et al. Short-term environmental variability in cold-water coral habitat at Viosca Knoll, Gulf of Mexico. Deep Sea Res. I(57), 199–212 (2010).
Mienis, F. et al. The influence of near-bed hydrodynamic conditions on cold-water corals in the Viosca Knoll area, Gulf of Mexico. Deep Sea Res. I(60), 32–45 (2012).
Flo, E., Garcés, E., Manzanera, M. & Camp, J. Coastal inshore waters in the NW Mediterranean: Physicochemical and biological characterization and management implications. Estuar. Coast. Shelf Sci. 93, 279–289 (2011).
Google Scholar
Davies, P. S. Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar. Biol. 101, 389–395 (1989).
R Core Team. R: A Language and Environment for Statistical Computing. (R Core Team, 2018).
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
Google Scholar
Thérond, P., Auger, J., Legrand, A. & Jouannet, P. α-tocopherol in human spermatozoa and seminal plasma: Relationships with motility, antioxidant enzymes and leukocytes. Mol. Hum. Reprod. 2, 739–744 (1996).
Google Scholar
Beers, R. F. & Sizer, I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133–140 (1952).
Google Scholar
Kalghatgi, S. et al. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci. Transl. Med. 5, 1–10 (2013).
Source: Ecology - nature.com