Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211 (2015).
Google Scholar
WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes (2016).
WHO. Guidelines for malaria vector control (2019).
Gnankiné, O. et al. Insecticide resistance in Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) and Anopheles gambiae Giles (Diptera: Culicidae) could compromise the sustainability of malaria vector control strategies in West Africa. Acta Trop. 128, 7–17 (2013).
Google Scholar
Ranson, H. & Lissenden, N. Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 32, 187–196 (2016).
Google Scholar
Reid, M. C. & McKenzie, F. E. The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors. Malar. J. 15, 1–8 (2016).
Google Scholar
Huijben, S. & Paaijmans, K. P. Putting evolution in elimination: Winning our ongoing battle with evolving malaria mosquitoes and parasites. Spec. Issue Rev. Synth. https://doi.org/10.1111/eva.12530 (2017).
Google Scholar
WHO. Global technical strategy for malaria 2016–2030, 2021 update (2021).
Ranson, H. et al. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol. Biol. 9, 491–497 (2000).
Google Scholar
Weill, M. et al. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol. Biol. 13, 1–7 (2004).
Google Scholar
Ranson, H. et al. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control?. Trends Parasitol. 27, 91–98 (2011).
Google Scholar
Hemingway, J., Hawkes, N. J., McCarroll, L. & Ranson, H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34, 653–665 (2004).
Google Scholar
Martinez-Torres, D. et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s.. Insect Mol. Biol. 7, 179–184 (1998).
Google Scholar
Jones, C. et al. Footprints of positive selection associated with a mutation (N1575Y) in the voltage-gated sodium channel of Anopheles gambiae. Proc. Natl. Acad. Sci. U. S. A. 109, 6614–6619 (2012).
Google Scholar
Hunt, R. H., Brooke, B. D., Pillay, C., Koekemoer, L. L. & Coetzee, M. Laboratory selection for and characteristics of pyrethroid resistance in the malaria vector Anopheles funestus. Med. Vet. Entomol. 19, 271–275 (2005).
Google Scholar
Glunt, K. D., Thomas, M. B. & Read, A. F. The effects of age, exposure history and malaria infection on the susceptibility of Anopheles mosquitoes to low concentrations of pyrethroid. PLoS One 6, e24968 (2011).
Google Scholar
Rajatileka, S., Burhani, J. & Ranson, H. Mosquito age and susceptibility to insecticides. Trans. R. Soc. Trop. Med. Hyg. 105, 247–253 (2011).
Google Scholar
Chouaibou, M. S. et al. Increase in susceptibility to insecticides with aging of wild Anopheles gambiae mosquitoes from Côte d’Ivoire. BMC Infect. Dis. 12, 1–7 (2012).
Google Scholar
Jones, C. M. et al. Aging partially restores the efficacy of malaria vector control in insecticide-resistant populations of Anopheles gambiae s.l. from Burkina Faso. Malar. J. 11, 1–11 (2012).
Google Scholar
Kulma, K., Saddler, A. & Koella, J. C. Effects of age and larval nutrition on phenotypic expression of insecticide-resistance in Anopheles Mosquitoes. PLoS ONE 8, 8–11 (2013).
Google Scholar
Aïzoun, N., Aïkpon, R., Azondekon, R., Asidi, A. & Akogbéto, M. Comparative susceptibility to permethrin of two Anopheles gambiae s.l. populations from Southern Benin, regarding mosquito sex, physiological status and mosquito age. Asian Pac. J. Trop. Biomed. 4, 312–317 (2014).
Google Scholar
Collins, E. et al. The relationship between insecticide resistance, mosquito age and malaria prevalence in Anopheles gambiae s.l. from Guinea. Sci. Rep. 9, 1–12 (2019).
Google Scholar
Oliver, S. & Brooke, B. The effect of larval nutritional deprivation on the life history and DDT resistance phenotype in laboratory strains of the malaria vector Anopheles arabiensis. Malar. J. 12, 1–9 (2013).
Google Scholar
Owusu, H. F., Chitnis, N. & Müller, P. Insecticide susceptibility of Anopheles mosquitoes changes in response to variations in the larval environment. Sci. Rep. 7, 1–9 (2017).
Google Scholar
Sovegnon, P. M., Fanou, M. J., Akoton, R. & Djihinto, O. Y. Effects of larval diet on the life-history traits and phenotypic expression of pyrethroid resistance in the major malaria vector Anopheles gambiae s.s. Preprint at bioRxiv http://doi.org/https://doi.org/10.1101/2022.01.11.475801 (2022).
Halliday, W. R. & Feyereisen, R. Why does DDT toxicity change after a blood meal in adult female Culex pipiens?. Pestic. Biochem. Physiol. 28, 172–181 (1987).
Google Scholar
Oliver, S. V., Lyons, C. L. & Brooke, B. D. The effect of blood feeding on insecticide resistance intensity and adult longevity in the major malaria vector Anopheles funestus (Diptera: Culicidae). Sci. Rep. 12, 1–9 (2022).
Google Scholar
Farenhorst, M. et al. Fungal infection counters insecticide resistance in African malaria mosquitoes. Proc. Natl. Acad. Sci. U. S. A. 106, 17443–17447 (2009).
Google Scholar
Koella, J. C., Saddler, A. & Karacs, T. P. S. Blocking the evolution of insecticide-resistant malaria vectors with a microsporidian. Evol. Appl. 5, 283–292 (2012).
Google Scholar
Alout, H. et al. Interplay between Plasmodium infection and resistance to insecticides in vector mosquitoes. J. Infect. Dis. 210, 1464–1470 (2014).
Google Scholar
Glunt, K. D., Oliver, S. V., Hunt, R. H. & Paaijmans, K. P. The impact of temperature on insecticide toxicity against the malaria vectors Anopheles arabiensis and Anopheles funestus. Malar. J. 17, 1–8 (2018).
Google Scholar
Oliver, S. & Brooke, B. The effect of commercial herbicide exposure on the life history and insecticide resistance phenotypes of the major malaria vector Anopheles arabiensis (Diptera: culicidae). Acta Trop. 188, 152–160 (2018).
Google Scholar
Oliver, S. & Brooke, B. The effect of metal pollution on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). PLoS ONE 13, 1–17 (2018).
Google Scholar
Foster, W. A. Mosquito sugar feeding and reproductive energetics. Annu. Rev. Entomol. 40, 443–474 (1995).
Google Scholar
Nyasembe, V. O., Tchouassi, D. P., Pirk, C. W. W., Sole, C. L. & Torto, B. Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors. PLoS Negl. Trop. Dis. 12, 1–21 (2018).
Google Scholar
Barredo, E. & DeGennaro, M. Not just from blood: Mosquito nutrient acquisition from nectar sources. Trends Parasitol. 36, 473–484 (2020).
Google Scholar
Stone, C. M. & Foster, W. A. Plant-sugar feeding and vectorial capacity. In Ecology of Parasite-Vector Interactions (eds Takken, W. & Koenraadt, C.) 35–79 (Wageningen Academic, 2013). https://doi.org/10.3920/978-90-8686-744-8_3.
Google Scholar
Hien, D. F. D. S. et al. Plant-mediated effects on mosquito capacity to transmit human malaria. PLoS Pathog. 12, e1005773 (2016).
Google Scholar
Stone, C., Witt, A., Walsh, G., Foster, W. & Murphy, S. Would the control of invasive alien plants reduce malaria transmission? A review. Parasites Vectors 11, 1–18 (2018).
Google Scholar
Ebrahimi, B. et al. Alteration of plant species assemblages can decrease the transmission potential of malaria mosquitoes. J. Appl. Ecol. 55, 841–851 (2018).
Google Scholar
Manda, H. et al. Discriminative feeding behaviour of Anopheles gambiae s.s. on endemic plants in western Kenya. Med. Vet. Entomol. 21, 103–111 (2007).
Google Scholar
Nyasembe, V. O. et al. Plasmodium falciparum infection increases Anopheles gambiae attraction to nectar sources and sugar uptake. Curr. Biol. 24, 217–221 (2014).
Google Scholar
Després, L., David, J. P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298–307 (2007).
Google Scholar
Nkya, T. E., Akhouayri, I., Kisinza, W. & David, J. P. Impact of environment on mosquito response to pyrethroid insecticides: Facts, evidences and prospects. Insect Biochem. Mol. Biol. 43, 407–416 (2013).
Google Scholar
Li, X., Schuler, M. A. & Berenbaum, M. R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231–253 (2007).
Google Scholar
Bationo, C. S. et al. Spatio-temporal analysis and prediction of malaria cases using remote sensing meteorological data in Diébougou health district, Burkina Faso, 2016–2017. Sci. Rep. 11, 1–12 (2021).
Google Scholar
Namountougou, M. et al. First report of the L1014S kdr mutation in wild populations of Anopheles gambiae M and S molecular forms in Burkina Faso (West Africa). Acta Trop. 125, 123–127 (2013).
Google Scholar
Service, M. W. A critical review of procedures for sampling populations of adult mosquitoes. Bull. Entomol. Res. 67, 343–382 (1977).
Google Scholar
Thiombiano, A. et al. Catalogue des plantes vasculaires du Burkina Faso. In Boissiera Vol. 65 (ed Cyrille Chatelain) (Conservatoire et Jardin botaniques, 2012).
Morlais, I., Ponçon, N., Simard, F., Cohuet, A. & Fontenille, D. Intraspecific nucleotide variation in Anopheles gambiae: New insights into the biology of malaria vectors. Am. J. Trop. Med. Hyg. 71, 795–802 (2004).
Google Scholar
Santolamazza, F. et al. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 7, 163 (2008).
Google Scholar
R Core Team. A language and environment for statistical computing (2021).
Crawley, M. J. The R Book (Wiley, 2007).
Google Scholar
Lenth, R. V. emmeans: Estimated marginal means, aka least-squares means (2021).
Hien, A. et al. Evidence supporting deployment of next generation insecticide treated nets in Burkina Faso: Bioassays with either chlorfenapyr or piperonyl butoxide increase mortality of pyrethroid-resistant Anopheles gambiae. Malar. J. 20, 1–13 (2021).
Google Scholar
Nicolson, S. W., Nepi, M. & Pacini, E. Nectaries and Nectar (Springer, Dordrecht, 2007).
Google Scholar
Abdu-Allah, G. et al. Dietary antioxidants impact DDT resistance in Drosophila melanogaster. PLoS ONE 15, 1–12 (2020).
Google Scholar
Gnankiné, O. & Bassolé, I. L. H. N. Essential oils as an alternative to pyrethroids’ resistance against Anopheles species complex giles (Diptera: Culicidae). Molecules 22, 1321 (2017).
Google Scholar
Gendrin, M. & Christophides, G. K. The Anopheles mosquito microbiota and their impact on pathogen transmission. In Anopheles Mosquitoes—New Insights into Malar. Vectors (ed. Manguin, S.) (IntechOpen, 2013).
Saab, S. A. et al. The environment and species affect gut bacteria composition in laboratory co-cultured Anopheles gambiae and Aedes albopictus mosquitoes. Sci. Rep. 10, 1–13 (2020).
Google Scholar
Dada, N., Sheth, M., Liebman, K., Pinto, J. & Lenhart, A. Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors. Sci. Rep. 8, 1–13 (2018).
Google Scholar
Barnard, K., Jeanrenaud, A. C. S. N., Brooke, B. D. & Oliver, S. V. The contribution of gut bacteria to insecticide resistance and the life histories of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Sci. Rep. 9, 1–11 (2019).
Google Scholar
Omoke, D. et al. Western Kenyan Anopheles gambiae showing intense permethrin resistance harbour distinct microbiota. Malar. J. 20, 1–14 (2021).
Google Scholar
Pelloquin, B. et al. Overabundance of Asaia and Serratia Bacteria is associated with deltamethrin insecticide susceptibility in Anopheles coluzzii from Agboville, Côte d’Ivoire. Microbiol. Spectr. 9, e00157-21 (2021).
Google Scholar
WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes (2013).
Owusu, H. F., Jančáryová, D., Malone, D. & Müller, P. Comparability between insecticide resistance bioassays for mosquito vectors: Time to review current methodology?. Parasites Vectors 8, 1–11 (2015).
Google Scholar
Source: Ecology - nature.com