in

Plastic plumage colouration in response to experimental humidity supports Gloger’s rule

  • West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford University Press, 2003).

    Book 

    Google Scholar 

  • Piersma, T. & Van Gils, J. A. The Flexible Phenotype: A Body-Centred Integration of Ecology, Physiology, and Behaviour (Oxford University Press, 2011).

    Google Scholar 

  • Piersma, T. & Drent, J. Phenotypic flexibility and the evolution of organismal design. Trends Ecol. Evol. 18, 228–233 (2003).

    Article 

    Google Scholar 

  • Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 10, 1–10 (2020).

    Google Scholar 

  • Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).

    Article 

    Google Scholar 

  • Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).

    Article 
    CAS 

    Google Scholar 

  • Rensch, B. Das Prinzip geographischer Rassenkreise und das Problem der Artbildung (Gebrueder Borntraeger, 1929).

    Google Scholar 

  • Clusella Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32, 235–245 (2007).

    Article 

    Google Scholar 

  • Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: Definitions, interpretations and evidence. Biol. Rev. 94, 1294–1316 (2019).

    Google Scholar 

  • Stuart-Fox, D., Newton, E. & Clusella-Trullas, S. Thermal consequences of colour and near-infrared reflectance. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160345 (2017).

    Article 

    Google Scholar 

  • Friedman, N. R. & Remês, V. Ecogeographical gradients in plumage coloration among Australasian songbird clades. Glob. Ecol. Biogeogr. 26, 261–274 (2017).

    Article 

    Google Scholar 

  • Delhey, K. Darker where cold and wet: Australian birds follow their own version of Gloger’s rule. Ecography 41, 673–683 (2018).

    Article 

    Google Scholar 

  • Galván, I., Rodríguez-Martínez, S. & Carrascal, L. M. Dark pigmentation limits thermal niche position in birds. Funct. Ecol. 32, 1531–1540 (2018).

    Article 

    Google Scholar 

  • Medina, I. et al. Reflection of near-infrared light confers thermal protection in birds. Nat. Commun 9, 3610 (2018).

    Article 
    ADS 

    Google Scholar 

  • Aldrich, J. W. & James, F. C. Ecogeographic variation in the American Robin (Turdus migratorius). Auk 108, 230–249 (1991).

    Google Scholar 

  • Morales, H. E. et al. Neutral and selective drivers of colour evolution in a widespread Australian passerine. J. Biogeogr. 44, 522–536 (2017).

    Article 

    Google Scholar 

  • Griffith, S. C., Owens, I. P. & Burke, T. Environmental determination of a sexually selected trait. Nature 400, 358–360 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fargallo, J. A., Laaksonen, T., Korpimäki, E. & Wakamatsu, K. A melanin-based trait reflects environmental growth conditions of nestling male Eurasian kestrels. Evol. Ecol. 21, 157–171 (2007).

    Article 

    Google Scholar 

  • Fargallo, J. A., Martínez, F., Wakamatsu, K., Serrano, D. & Blanco, G. Sex-dependent expression and fitness consequences of sunlight derived color phenotypes. Am. Nat. 191, 726–743 (2018).

    Article 

    Google Scholar 

  • Beebe, W. Geographic variation in birds, with especial reference to the effects of humidity. Zoologica 1, 3–41 (1907).

    Google Scholar 

  • Bieber, H. Fellverdunklung beim hauskaninchen nach kälteeinwirkung. Zeitschrift für Säugetierkunde 38, 33–38 (1972).

    Google Scholar 

  • Johnston, R. F. & Selander, R. K. House sparrows: Rapid evolution of races in North America. Science 144, 548–550 (1964).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Galván, I., Wakamatsu, K. & Alonso-Álvarez, C. Black bib size is associated with feather content of pheomelanin in male house sparrows. Pigment Cell Melanoma Res. 27, 1159–1161 (2014).

    Article 

    Google Scholar 

  • Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41, 315–352 (1990).

    Article 

    Google Scholar 

  • Montgomerie, R. Analyzing colors. In Bird Colouration I. Mechanisms and Measurements (eds Hill, E. G. & McGraw, K. J.) (Harvard University Press, 2006).

    Google Scholar 

  • McGraw, K. J., Dale, J. & Mackillop, E. A. Social environment during molt and the expression of melanin-based plumage pigmentation in male house sparrows (Passer domesticus). Behav. Ecol. Sociobiol. 53, 116–122 (2003).

    Article 

    Google Scholar 

  • Lessells, C. M. & Boag, P. T. Unrepeatable repeatabilities a common mistake. Auk 104, 116–121 (1987).

    Article 

    Google Scholar 

  • Anderson, T. R. Biology of the Ubiquitous House Sparrow (Oxford University Press, 2006).

    Book 

    Google Scholar 

  • Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, 2006).

    Book 

    Google Scholar 

  • Nakagawa, S., Ockendon, N., Gillespie, D. O., Hatchwell, B. J. & Burke, T. Assessing the function of house sparrows’ bib size using a flexible meta-analysis method. Behav. Ecol. 18, 831–840 (2007).

    Article 

    Google Scholar 

  • Hill, G. E. & McGraw, K. J. Bird Coloration, Volume I: Mechanisms and Measurements (Harvard University Press, 2006).

    Book 

    Google Scholar 

  • D’Alba, L. & Shawkey, M. D. Melanosomes: Biogenesis, properties, and evolution of an ancient organelle. Physiol. Rev. 99, 1–19 (2018).

    Article 

    Google Scholar 

  • Delhey, K., Burger, C., Fiedler, W. & Peters, A. Seasonal changes in colour: A comparison of structural, melanin- and carotenoid-based plumage colours. PLoS ONE 5, e11582 (2010).

    Article 
    ADS 

    Google Scholar 

  • Galván, I., Mousseau, T. A. & Møller, A. P. Bird population declines due to radiation exposure at Chernobyl are stronger in species with pheomelanin-based coloration. Oecologia 165, 827–835 (2011).

    Article 
    ADS 

    Google Scholar 

  • Meunier, J., Pinto, S. F., Burri, R. & Roulin, A. Eumelanin-based coloration and fitness parameters in birds: A meta-analysis. Behav. Ecol. Sociobiol. 65, 559–567 (2011).

    Article 

    Google Scholar 

  • Roulin, A., Almasi, B., Meichtry-Stier, K. S. & Jenni, L. Eumelanin- and pheomelanin-based colour advertise resistance to oxidative stress in opposite ways. J. Evol. Biol. 24, 2241–2247 (2011).

    Article 
    CAS 

    Google Scholar 

  • Gasparini, J. et al. Strength and cost of an induced immune response are associated with a heritable melanin-based colour trait in female tawny owls. J. Anim. Ecol. 78, 608–616 (2009).

    Article 

    Google Scholar 

  • Fargallo, J. A. et al. Sex-specific phenotypic integration: Endocrine profiles, coloration, and behavior in fledgling boobies. Behav. Ecol. 25, 76–87 (2013).

    Article 

    Google Scholar 

  • Wittkopp, P. J. & Beldade, P. Development and evolution of insect pigmentation: Genetic mechanisms and the potential consequences of pleiotropy. Semin. Cell Dev. Biol. 20, 65–71 (2009).

    Article 
    CAS 

    Google Scholar 

  • Hubbard, J. K., Uy, J. A. C., Hauber, M. E., Hoekstra, H. E. & Safran, R. J. Vertebrate pigmentation: From underlying genes to adaptive function. Trends Genet. 26, 231–239 (2010).

    Article 
    CAS 

    Google Scholar 

  • McKinnon, J. S. & Pierotti, M. E. Colour polymorphism and correlated characters: Genetic mechanisms and evolution. Mol. Ecol. 19, 5101–5125 (2010).

    Article 

    Google Scholar 

  • Poston, J. P., Hasselquist, D., Stewart, I. R. & Westneat, D. F. Dietary amino acids influence plumage traits and immune responses of male house sparrows, Passer domesticus, but not as expected. Anim. Behav. 70, 1171–1181 (2005).

    Article 

    Google Scholar 

  • McGraw, K. J. Dietary mineral content influences the expression of melanin-based ornamental coloration. Behav. Ecol. 18, 137–142 (2007).

    Article 

    Google Scholar 

  • Fargallo, J. A., Martínez-Padilla, J., Toledano-Díaz, A., Santiago-Moreno, J. & Dávila, J. A. Sex and testosterone effects on growth, immunity and melanin coloration of nestling Eurasian kestrels. J. Anim. Ecol. 76, 201–209 (2007).

    Article 

    Google Scholar 

  • Fitze, P. S. & Richner, H. Differential effects of a parasite on ornamental structures based on melanins and carotenoids. Behav. Ecol. 13, 401–407 (2002).

    Article 

    Google Scholar 

  • Roulin, A., Altwegg, R., Jensen, H., Steinsland, I. & Schaub, M. Sex-dependent selection on an autosomal melanic female ornament promotes the evolution of sex ratio bias. Ecol. Lett. 13, 616–626 (2010).

    Article 

    Google Scholar 

  • Sharma, A. Effect of ambient humidity on UV/visible photodegradation of melanin thin films. Photochem. Photobiol. 86, 852–855 (2010).

    Article 
    CAS 

    Google Scholar 

  • Burtt, E. H. The adaptiveness of animal colors. Bioscience 31, 723–729 (1981).

    Article 

    Google Scholar 

  • Heppner, F. The metabolic significance of differential absorption of radiant energy by black and white birds. Condor 72, 50–59 (1970).

    Article 

    Google Scholar 

  • Clusella-Trullas, S., Terblanche, J. S., Blackburn, T. M. & Chown, S. L. Testing the thermal melanism hypothesis: A macrophysiological approach. Funct. Ecol. 22, 232–238 (2008).

    Article 

    Google Scholar 

  • Zink, R. M. & Remsen, J. V. Evolutionary processes and patterns of geographic variation in birds. Curr. Ornithol. 4, 1–69 (1986).

    Google Scholar 

  • Burtt, E. H. & Ichida, J. M. Gloger’s rule, feather-degrading bacteria, and color variation among song sparrows. Condor 106, 681–686 (2004).

    Article 

    Google Scholar 

  • Ruiz-De-Castaneda, R., Burtt, E. H. Jr., Gonzalez-Braojos, S. & Moreno, J. Bacterial degradability of an intrafeather unmelanized ornament: A role for feather-degrading bacteria in sexual selection?. Biol. J. Linn. Soc. 105, 409–419 (2012).

    Article 

    Google Scholar 

  • Goldstein, G. et al. Bacterial degradation of black and white feathers. Auk 121, 656–659 (2004).

    Article 

    Google Scholar 

  • Ducrest, A. L., Keller, L. & Roulin, A. Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol. Evol. 23, 502–510 (2008).

    Article 

    Google Scholar 

  • Kim, S. Y., Fargallo, J. A., Vergara, P. & Martínez-Padilla, J. Multivariate heredity of melanin-based coloration, body mass and immunity. Heredity 111, 139–146 (2013).

    Article 
    CAS 

    Google Scholar 

  • Horrocks, N. P. C. et al. Environmental proxies of antigen exposure explain variation in immune investment better than indices of pace of life. Oecologia 177, 281–290 (2015).

    Article 
    ADS 

    Google Scholar 

  • McLean, N., Van Der Jeugd, H. P. & van de Pol, M. High intra-specific variation in avian body condition responses to climate limits generalisation across species. PLoS ONE 13, e0192401 (2018).

    Article 

    Google Scholar 

  • Gardner, J. L. et al. Spatial variation in avian bill size is associated with humidity in summer among Australian passerines. Clim. Change Responses 3, 11 (2016).

    Article 

    Google Scholar 

  • Gerson, A. R. et al. Flight at low ambient humidity increases protein catabolism in migratory birds. Science 333, 1434–1436 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    The impact of the striped field mouse’s range expansion on communities of native small mammals

    Modeling marine cargo traffic to identify countries in Africa with greatest risk of invasion by Anopheles stephensi