West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford University Press, 2003).
Google Scholar
Piersma, T. & Van Gils, J. A. The Flexible Phenotype: A Body-Centred Integration of Ecology, Physiology, and Behaviour (Oxford University Press, 2011).
Piersma, T. & Drent, J. Phenotypic flexibility and the evolution of organismal design. Trends Ecol. Evol. 18, 228–233 (2003).
Google Scholar
Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 10, 1–10 (2020).
Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).
Google Scholar
Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).
Google Scholar
Rensch, B. Das Prinzip geographischer Rassenkreise und das Problem der Artbildung (Gebrueder Borntraeger, 1929).
Clusella Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32, 235–245 (2007).
Google Scholar
Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: Definitions, interpretations and evidence. Biol. Rev. 94, 1294–1316 (2019).
Stuart-Fox, D., Newton, E. & Clusella-Trullas, S. Thermal consequences of colour and near-infrared reflectance. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160345 (2017).
Google Scholar
Friedman, N. R. & Remês, V. Ecogeographical gradients in plumage coloration among Australasian songbird clades. Glob. Ecol. Biogeogr. 26, 261–274 (2017).
Google Scholar
Delhey, K. Darker where cold and wet: Australian birds follow their own version of Gloger’s rule. Ecography 41, 673–683 (2018).
Google Scholar
Galván, I., Rodríguez-Martínez, S. & Carrascal, L. M. Dark pigmentation limits thermal niche position in birds. Funct. Ecol. 32, 1531–1540 (2018).
Google Scholar
Medina, I. et al. Reflection of near-infrared light confers thermal protection in birds. Nat. Commun 9, 3610 (2018).
Google Scholar
Aldrich, J. W. & James, F. C. Ecogeographic variation in the American Robin (Turdus migratorius). Auk 108, 230–249 (1991).
Morales, H. E. et al. Neutral and selective drivers of colour evolution in a widespread Australian passerine. J. Biogeogr. 44, 522–536 (2017).
Google Scholar
Griffith, S. C., Owens, I. P. & Burke, T. Environmental determination of a sexually selected trait. Nature 400, 358–360 (1999).
Google Scholar
Fargallo, J. A., Laaksonen, T., Korpimäki, E. & Wakamatsu, K. A melanin-based trait reflects environmental growth conditions of nestling male Eurasian kestrels. Evol. Ecol. 21, 157–171 (2007).
Google Scholar
Fargallo, J. A., Martínez, F., Wakamatsu, K., Serrano, D. & Blanco, G. Sex-dependent expression and fitness consequences of sunlight derived color phenotypes. Am. Nat. 191, 726–743 (2018).
Google Scholar
Beebe, W. Geographic variation in birds, with especial reference to the effects of humidity. Zoologica 1, 3–41 (1907).
Bieber, H. Fellverdunklung beim hauskaninchen nach kälteeinwirkung. Zeitschrift für Säugetierkunde 38, 33–38 (1972).
Johnston, R. F. & Selander, R. K. House sparrows: Rapid evolution of races in North America. Science 144, 548–550 (1964).
Google Scholar
Galván, I., Wakamatsu, K. & Alonso-Álvarez, C. Black bib size is associated with feather content of pheomelanin in male house sparrows. Pigment Cell Melanoma Res. 27, 1159–1161 (2014).
Google Scholar
Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41, 315–352 (1990).
Google Scholar
Montgomerie, R. Analyzing colors. In Bird Colouration I. Mechanisms and Measurements (eds Hill, E. G. & McGraw, K. J.) (Harvard University Press, 2006).
McGraw, K. J., Dale, J. & Mackillop, E. A. Social environment during molt and the expression of melanin-based plumage pigmentation in male house sparrows (Passer domesticus). Behav. Ecol. Sociobiol. 53, 116–122 (2003).
Google Scholar
Lessells, C. M. & Boag, P. T. Unrepeatable repeatabilities a common mistake. Auk 104, 116–121 (1987).
Google Scholar
Anderson, T. R. Biology of the Ubiquitous House Sparrow (Oxford University Press, 2006).
Google Scholar
Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, 2006).
Google Scholar
Nakagawa, S., Ockendon, N., Gillespie, D. O., Hatchwell, B. J. & Burke, T. Assessing the function of house sparrows’ bib size using a flexible meta-analysis method. Behav. Ecol. 18, 831–840 (2007).
Google Scholar
Hill, G. E. & McGraw, K. J. Bird Coloration, Volume I: Mechanisms and Measurements (Harvard University Press, 2006).
Google Scholar
D’Alba, L. & Shawkey, M. D. Melanosomes: Biogenesis, properties, and evolution of an ancient organelle. Physiol. Rev. 99, 1–19 (2018).
Google Scholar
Delhey, K., Burger, C., Fiedler, W. & Peters, A. Seasonal changes in colour: A comparison of structural, melanin- and carotenoid-based plumage colours. PLoS ONE 5, e11582 (2010).
Google Scholar
Galván, I., Mousseau, T. A. & Møller, A. P. Bird population declines due to radiation exposure at Chernobyl are stronger in species with pheomelanin-based coloration. Oecologia 165, 827–835 (2011).
Google Scholar
Meunier, J., Pinto, S. F., Burri, R. & Roulin, A. Eumelanin-based coloration and fitness parameters in birds: A meta-analysis. Behav. Ecol. Sociobiol. 65, 559–567 (2011).
Google Scholar
Roulin, A., Almasi, B., Meichtry-Stier, K. S. & Jenni, L. Eumelanin- and pheomelanin-based colour advertise resistance to oxidative stress in opposite ways. J. Evol. Biol. 24, 2241–2247 (2011).
Google Scholar
Gasparini, J. et al. Strength and cost of an induced immune response are associated with a heritable melanin-based colour trait in female tawny owls. J. Anim. Ecol. 78, 608–616 (2009).
Google Scholar
Fargallo, J. A. et al. Sex-specific phenotypic integration: Endocrine profiles, coloration, and behavior in fledgling boobies. Behav. Ecol. 25, 76–87 (2013).
Google Scholar
Wittkopp, P. J. & Beldade, P. Development and evolution of insect pigmentation: Genetic mechanisms and the potential consequences of pleiotropy. Semin. Cell Dev. Biol. 20, 65–71 (2009).
Google Scholar
Hubbard, J. K., Uy, J. A. C., Hauber, M. E., Hoekstra, H. E. & Safran, R. J. Vertebrate pigmentation: From underlying genes to adaptive function. Trends Genet. 26, 231–239 (2010).
Google Scholar
McKinnon, J. S. & Pierotti, M. E. Colour polymorphism and correlated characters: Genetic mechanisms and evolution. Mol. Ecol. 19, 5101–5125 (2010).
Google Scholar
Poston, J. P., Hasselquist, D., Stewart, I. R. & Westneat, D. F. Dietary amino acids influence plumage traits and immune responses of male house sparrows, Passer domesticus, but not as expected. Anim. Behav. 70, 1171–1181 (2005).
Google Scholar
McGraw, K. J. Dietary mineral content influences the expression of melanin-based ornamental coloration. Behav. Ecol. 18, 137–142 (2007).
Google Scholar
Fargallo, J. A., Martínez-Padilla, J., Toledano-Díaz, A., Santiago-Moreno, J. & Dávila, J. A. Sex and testosterone effects on growth, immunity and melanin coloration of nestling Eurasian kestrels. J. Anim. Ecol. 76, 201–209 (2007).
Google Scholar
Fitze, P. S. & Richner, H. Differential effects of a parasite on ornamental structures based on melanins and carotenoids. Behav. Ecol. 13, 401–407 (2002).
Google Scholar
Roulin, A., Altwegg, R., Jensen, H., Steinsland, I. & Schaub, M. Sex-dependent selection on an autosomal melanic female ornament promotes the evolution of sex ratio bias. Ecol. Lett. 13, 616–626 (2010).
Google Scholar
Sharma, A. Effect of ambient humidity on UV/visible photodegradation of melanin thin films. Photochem. Photobiol. 86, 852–855 (2010).
Google Scholar
Burtt, E. H. The adaptiveness of animal colors. Bioscience 31, 723–729 (1981).
Google Scholar
Heppner, F. The metabolic significance of differential absorption of radiant energy by black and white birds. Condor 72, 50–59 (1970).
Google Scholar
Clusella-Trullas, S., Terblanche, J. S., Blackburn, T. M. & Chown, S. L. Testing the thermal melanism hypothesis: A macrophysiological approach. Funct. Ecol. 22, 232–238 (2008).
Google Scholar
Zink, R. M. & Remsen, J. V. Evolutionary processes and patterns of geographic variation in birds. Curr. Ornithol. 4, 1–69 (1986).
Burtt, E. H. & Ichida, J. M. Gloger’s rule, feather-degrading bacteria, and color variation among song sparrows. Condor 106, 681–686 (2004).
Google Scholar
Ruiz-De-Castaneda, R., Burtt, E. H. Jr., Gonzalez-Braojos, S. & Moreno, J. Bacterial degradability of an intrafeather unmelanized ornament: A role for feather-degrading bacteria in sexual selection?. Biol. J. Linn. Soc. 105, 409–419 (2012).
Google Scholar
Goldstein, G. et al. Bacterial degradation of black and white feathers. Auk 121, 656–659 (2004).
Google Scholar
Ducrest, A. L., Keller, L. & Roulin, A. Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol. Evol. 23, 502–510 (2008).
Google Scholar
Kim, S. Y., Fargallo, J. A., Vergara, P. & Martínez-Padilla, J. Multivariate heredity of melanin-based coloration, body mass and immunity. Heredity 111, 139–146 (2013).
Google Scholar
Horrocks, N. P. C. et al. Environmental proxies of antigen exposure explain variation in immune investment better than indices of pace of life. Oecologia 177, 281–290 (2015).
Google Scholar
McLean, N., Van Der Jeugd, H. P. & van de Pol, M. High intra-specific variation in avian body condition responses to climate limits generalisation across species. PLoS ONE 13, e0192401 (2018).
Google Scholar
Gardner, J. L. et al. Spatial variation in avian bill size is associated with humidity in summer among Australian passerines. Clim. Change Responses 3, 11 (2016).
Google Scholar
Gerson, A. R. et al. Flight at low ambient humidity increases protein catabolism in migratory birds. Science 333, 1434–1436 (2011).
Google Scholar
Source: Ecology - nature.com