Speakman, J. R. The cost of living: Field metabolic rates of small mammals. Adv. Ecol. Res. 30, 177–297 (1999).
Google Scholar
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metaboolic theory of ecology. Ecology 85(7), 1771–1789. https://doi.org/10.1890/03-9000 (2004).
Google Scholar
Larivée, M. L., Boutin, S., Speakman, J. R., McAdam, A. G. & Humphries, M. M. Associations between over-winter survival and resting metabolic rate in juvenile North American red squirrels. Funct. Ecol. 24(3), 597–607. https://doi.org/10.1111/j.1365-2435.2009.01680.x (2010).
Google Scholar
Corp, N., Gorman, M. L. & Speakman, J. R. Seasonal variation in the resting metabolic rate of male wood mice Apodemus sylvaticus from two contrasting habitats 15 km apart. J. Comp. Physiol. B 167(3), 229–239. https://doi.org/10.1007/s003600050069 (1997).
Google Scholar
Lehto Hürlimann, M., Martin, J. G. A. & Bize, P. Evidence of phenotypic correlation between exploration activity and resting metabolic rate among populations across an elevation gradient in a small rodent species. Behav. Ecol. Sociobiol. 73(9), 131. https://doi.org/10.1007/s00265-019-2740-6 (2019).
Google Scholar
Reher, S., Rabarison, H., Montero, B. K., Turner, J. M. & Dausmann, K. H. Disparate roost sites drive intraspecific physiological variation in a Malagasy bat. Oecologia 198(1), 35–52. https://doi.org/10.1007/s00442-021-05088-2 (2022).
Google Scholar
McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. https://doi.org/10.1038/s41893-019-0436-6 (2019).
Google Scholar
Shochat, E., Warren, P. S., Faeth, S. H., McIntyre, N. E. & Hope, D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 21(4), 186–191. https://doi.org/10.1016/j.tree.2005.11.019 (2006).
Google Scholar
United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects 2018: Highlights. https://population.un.org/wup/Publications/ (2018).
Alberti, M. et al. The complexity of urban eco-evolutionary dynamics. Bioscience 70(9), 772–793. https://doi.org/10.1093/biosci/biaa079 (2020).
Google Scholar
Birnie-Gauvin, K., Peiman, K. S., Gallagher, A. J., de Bruijn, R. & Cooke, S. J. Sublethal consequences of urban life for wild vertebrates. Environ. Rev. 24(4), 416–425. https://doi.org/10.1139/er-2016-0029 (2016).
Google Scholar
Diamond, S. E. & Martin, R. A. Physiological adaptation to cities as a proxy to forecast global-scale responses to climate change. J. Exp. Biol. 224((Suppl_1)), jeb22336. https://doi.org/10.1242/jeb.229336 (2021).
Google Scholar
Grimm, N. B. et al. Global change and the ecology of cities. Science 319(5864), 756–760. https://doi.org/10.1126/science.1150195 (2008).
Google Scholar
McDonnell, M. J. & Pickett, S. T. Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology 71(4), 1232–1237. https://doi.org/10.2307/1938259 (1990).
Google Scholar
Francis, R. A. & Chadwick, M. A. What makes a species synurbic?. Appl. Geogr. 32(2), 514–521. https://doi.org/10.1016/j.apgeog.2011.06.013 (2012).
Google Scholar
Luniak, M. Synurbization–adaptation of animal wildlife to urban development. In Proc. 4th Int. Symposium Urban Wildl. Conserv (Tucson, University of Arizona, 2004).
Coogan, S. C. P., Raubenheimer, D., Zantis, S. P. & Machovsky-Capuska, G. E. Multidimensional nutritional ecology and urban birds. Ecosphere 9(4), e02177. https://doi.org/10.1002/ecs2.2177 (2018).
Google Scholar
Lowry, H., Lill, A. & Wong, B. B. Behavioural responses of wildlife to urban environments. Biol. Rev. Camb. Philos. Soc. 88(3), 537–549. https://doi.org/10.1111/brv.12012 (2013).
Google Scholar
Łopucki, R., Klich, D., Ścibior, A. & Gołębiowska, D. Hormonal adjustments to urban conditions: Stress hormone levels in urban and rural populations of Apodemus agrarius. Urban Ecosyst. 22(3), 435–442. https://doi.org/10.1007/s11252-019-0832-8 (2019).
Google Scholar
McCleery, R. in Urban mammals in Urban Ecosystem Ecology (eds. Aitkenhead-Peterson, J., Volder, A.) 87–102 (American Society of Agronomy, 2010). https://doi.org/10.2134/agronmonogr55.c52010
Uchida, K., Suzuki, K., Shimamoto, T., Yanagawa, H. & Koizumi, I. Seasonal variation of flight initiation distance in Eurasian red squirrels in urban versus rural habitat. J. Zool. 298(3), 225–231. https://doi.org/10.1111/jzo.12306 (2016).
Google Scholar
Kleerekoper, L., van Esch, M. & Salcedo, T. B. How to make a city climate-proof, addressing the urban heat island effect. Resour. Conserv. Recyl. 64, 30–38. https://doi.org/10.1016/j.resconrec.2011.06.004 (2012).
Google Scholar
Pickett, S. T. et al. Urban ecological systems: Scientific foundations and a decade of progress. J. Environ. Manag. 92(3), 331–362. https://doi.org/10.1016/j.jenvman.2010.08.022 (2011).
Google Scholar
Rizwan, A. M., Dennis, L. Y. & Chunho, L. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 20(1), 120–128 (2008).
Google Scholar
Isaksson, C. Urban ecophysiology: Beyond costs, stress and biomarkers. J. Exp. Biol. 223(22), jeb203794. https://doi.org/10.1242/jeb.203794 (2020).
Google Scholar
Miles, L. S., Carlen, E. J., Winchell, K. M. & Johnson, M. T. J. Urban evolution comes into its own: Emerging themes and future directions of a burgeoning field. Evol. Appl. 14(1), 3–11. https://doi.org/10.1111/eva.13165 (2020).
Google Scholar
Gavett, A. P. & Wakeley, J. S. Blood constituents and their relation to diet in urban and rural house sparrows. Condor 88(3), 279–284. https://doi.org/10.2307/1368873 (1986).
Google Scholar
Murray, M. et al. Greater consumption of protein-poor anthropogenic food by urban relative to rural coyotes increases diet breadth and potential for human-wildlife conflict. Ecography 38(12), 1235–1242. https://doi.org/10.1111/ecog.01128 (2015).
Google Scholar
Pollock, C. J., Capilla-Lasheras, P., McGill, R. A. R., Helm, B. & Dominoni, D. M. Integrated behavioural and stable isotope data reveal altered diet linked to low breeding success in urban-dwelling blue tits (Cyanistes caeruleus). Sci. Rep. 7(1), 5014. https://doi.org/10.1038/s41598-017-04575-y (2017).
Google Scholar
Schulte-Hostedde, A. I., Mazal, Z., Jardine, C. M. & Gagnon, J. Enhanced access to anthropogenic food waste is related to hyperglycemia in raccoons (Procyon lotor). Conserv. Physiol. 6(1), coy026. https://doi.org/10.1093/conphys/coy026 (2018).
Google Scholar
Fingland, K., Ward, S. J., Bates, A. J. & Bremner-Harrison, S. A systematic review into the suitability of urban refugia for the Eurasian red squirrel Sciurus vulgaris. Mamm. Rev. 52(1), 26–38. https://doi.org/10.1111/mam.12264 (2021).
Google Scholar
Jokimäki, J., Selonen, V., Lehikoinen, A. & Kaisanlahti-Jokimäki, M.-L. The role of urban habitats in the abundance of red squirrels (Sciurus vulgaris, L.) in Finland. Urban For. Urban Green. 27, 100–108. https://doi.org/10.1016/j.ufug.2017.06.021 (2017).
Google Scholar
Dausmann, K. H., Wein, J., Turner, J. M. & Glos, J. Absence of heterothermy in the European red squirrel (Sciurus vulgaris). Mammal. Biol. 78(5), 332–335. https://doi.org/10.1016/j.mambio.2013.01.004 (2013).
Google Scholar
Turner, J. M., Reher, S., Warnecke, L. & Dausmann, K. H. Eurasian red squirrels show little seasonal variation in metabolism in food-enriched habitat. Physiol. Biochem. Zool. 90(6), 655–662. https://doi.org/10.1086/694847 (2017).
Google Scholar
McNab, B. K. On the comparative ecological and evolutionary significance of total and mass-specific rates of metabolism. Physiol. Biochem. Zool. 72(5), 642–644 (1999).
Google Scholar
Menzies, A. K. et al. Body temperature, heart rate, and activity patterns of two boreal homeotherms in winter: Homeostasis, allostasis, and ecological coexistence. Funct. Ecol. 34(11), 2292–2301. https://doi.org/10.1111/1365-2435.13640 (2020).
Google Scholar
Wauters, L. & Dhondt, A. Activity budget and foraging behaviour of the red squirrel (Sciurus vulgaris Linnaeus, 1758) in a coniferous habitat. Z. Säugetierkd. 52(6), 341–353 (1987).
Wauters, L., Swinnen, C. & Dhondt, A. A. Activity budget and foraging behaviour of red squirrels (Sciurus vulgaris) in coniferous and deciduous habitats. J. Zool. 227(1), 71–86. https://doi.org/10.1111/j.1469-7998.1992.tb04345.x (1992).
Google Scholar
Reher, S., Dausmann, K. H., Warnecke, L. & Turner, J. M. Food availability affects habitat use of Eurasian red squirrels (Sciurus vulgaris) in a semi-urban environment. J. Mammal. 97(6), 1543–1554. https://doi.org/10.1093/jmammal/gyw105 (2016).
Google Scholar
Moller, H. Foods and foraging behavior of red (Sciurus vulgaris) and grey (Sciurus carolinensis) squirrels. Mammal. Rev. 13(2–4), 81–98. https://doi.org/10.1111/j.1365-2907.1983.tb00270.x (1983).
Google Scholar
Krauze-Gryz, D. & Gryz, J. in A review of the diet of the red squirrel (Sciurus vulgaris) in different types of habitats in Red squirrels: Ecology, conservation & management in Europe (eds. Shuttleworth, C. M., Lurz, P. W. W., Hayward, M. W.) 39–50 (European Squirrel Initiative, London, 2015)
Shuttleworth, C. M. in The effect of supplemental feeding on the red squirrel (Sciurus vulgaris), Doctoral dissertation (University of London, London, 1996).
Birnie-Gauvin, K., Peiman, K. S., Raubenheimer, D. & Cooke, S. J. Nutritional physiology and ecology of wildlife in a changing world. Conserv. Physiol. https://doi.org/10.1093/conphys/cox030 (2017).
Google Scholar
Wist, B., Stolter, C. & Dausmann, K. H. Sugar addicted in the city: Impact of urbanisation on food choice and diet composition of the Eurasian red squirrel (Sciurus vulgaris). J. Urban Ecol. 8(1), juac012. https://doi.org/10.1093/jue/juac012 (2022).
Google Scholar
Burton, T., Killen, S. S., Armstrong, J. D. & Metcalfe, N. B. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?. Proc. Biol. Sci. 278(1724), 3465–3473. https://doi.org/10.1098/rspb.2011.1778 (2011).
Google Scholar
Clarke, A. Costs and consequences of evolutionary temperature adaptation. Trends Ecol. Evol. 18(11), 573–581. https://doi.org/10.1016/j.tree.2003.08.007 (2003).
Google Scholar
Lovegrove, B. G. The influence of climate on the basal metabolic rate of small mammals: A slow-fast metabolic continuum. J. Comp. Physiol. B 173(2), 87–112. https://doi.org/10.1007/s00360-002-0309-5 (2003).
Google Scholar
McNab, B. K. The energetics of endotherms. Ohio J. Sci. 74(6), 370–380 (1974).
Tattersall, G. J. et al. Coping with thermal challenges: Physiological adaptations to environmental temperatures. Compr. Physiol. 2(3), 2151–2202 (2012).
Google Scholar
Broggi, J. et al. Sources of variation in winter basal metabolic rate in the great tit. Funct. Ecol. 21(3), 528–533. https://doi.org/10.1111/j.1365-2435.2007.01255.x (2007).
Google Scholar
Schlünzen, K. H., Hoffmann, P., Rosenhagen, G. & Riecke, W. Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg. Int. J. Climatol. 30(8), 1121–1136. https://doi.org/10.1002/joc.1968 (2010).
Google Scholar
Reher, S. & Dausmann, K. H. Tropical bats counter heat by combining torpor with adaptive hyperthermia. Proc. R. Soc. B Biol. Sci. 288(1942), 20202059. https://doi.org/10.1098/rspb.2020.2059 (2021).
Google Scholar
Rezende, E. L. & Bacigalupe, L. D. Thermoregulation in endotherms: Physiological principles and ecological consequences. J. Comp. Physiol. B 185(7), 709–727. https://doi.org/10.1007/s00360-015-0909-5 (2015).
Google Scholar
Scholander, P. F., Hock, R., Walters, V., Johnson, F. & Irving, L. Heat regulation in some arctic and tropical mammals and birds. Biol. Bull. 99(2), 237–258. https://doi.org/10.2307/1538741 (1950).
Google Scholar
Terblanche, J. S., Clusella-Trullas, S., Deere, J. A., Van Vuuren, B. J. & Chown, S. L. Directional evolution of the slope of the metabolic rate-temperature relationship is correlated with climate. Physiol. Biochem. Zool. 82(5), 495–503. https://doi.org/10.1086/605361 (2009).
Google Scholar
Gallo, K. P., Easterling, D. R. & Peterson, T. C. The influence of land use/land cover on climatological values of the diurnal temperature range. J. Clim. 9(11), 2941–2944. https://doi.org/10.1175/1520-0442(1996)009%3c2941:TIOLUC%3e2.0.CO;2 (1996).
Google Scholar
Wang, K. et al. Urbanization effect on the diurnal temperature range: Different roles under solar dimming and brightening. J. Clim. 25(3), 1022–1027. https://doi.org/10.1175/jcli-d-10-05030.1 (2012).
Google Scholar
Fristoe, T. S. et al. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals. Proc. Natl. Acad. Sci. USA 112(52), 15934–15939. https://doi.org/10.1073/pnas.1521662112 (2015).
Google Scholar
Sándor, K. et al. Urban nestlings have reduced number of feathers in Great Tits (Parus major). Ibis 163(4), 1369–1378. https://doi.org/10.1111/ibi.12948 (2021).
Google Scholar
Beliniak, A., Krauze-Gryz, D., Jasińska, K., Jankowska, K. & Gryz, J. Contrast in daily activity patterns of red squirrels inhabiting urban park and urban forest. Hystrix https://doi.org/10.4404/hystrix-00476-2021 (2021).
Google Scholar
Thomas, L. S., Teich, E., Dausmann, K., Reher, S. & Turner, J. M. Degree of urbanisation affects Eurasian red squirrel activity patterns. Hystrix 29(2), 175–180. https://doi.org/10.4404/hystrix-00065-2018 (2018).
Google Scholar
Krauze-Gryz, D., Gryz, J. & Brach, M. Spatial organization, behaviour and feeding habits of red squirrels: Differences between an urban park and an urban forest. J. Zool. 315(1), 69–78. https://doi.org/10.1111/jzo.12905 (2021).
Google Scholar
Jarman, T. E., Gartrell, B. D. & Battley, P. F. Differences in body composition between urban and rural mallards Anas platyrhynchos. J. Urban Ecol. 6(1), juaa011. https://doi.org/10.1093/jue/juaa011 (2020).
Google Scholar
Cruz-Neto, A. P. & Bozinovic, F. The relationship between diet quality and basal metabolic rate in endotherms: Insights from intraspecific analysis. Physiol. Biochem. Zool. 77(6), 877–889 (2004).
Google Scholar
Geluso, K. & Hayes, J. P. Effects of dietary quality on basal metabolic rate and internal morphology of European starlings (Sturnus vulgaris). Physiol. Biochem. Zool. 72(2), 189–197 (1999).
Google Scholar
Seebacher, F. Is endothermy an evolutionary by-product?. Trends Ecol. Evol. 35(6), 503–511. https://doi.org/10.1016/j.tree.2020.02.006 (2020).
Google Scholar
Perissinotti, P. P., Antenucci, C. D., Zenuto, R. & Luna, F. Effect of diet quality and soil hardness on metabolic rate in the subterranean rodent Ctenomys talarum. Comp. Biochem. Physiol. Mol. Integr. Physiol. 154(3), 298–307. https://doi.org/10.1016/j.cbpa.2009.05.013 (2009).
Google Scholar
Thorp, C. R., Ram, P. K. & Florant, G. L. Diet alters metabolic rate in the yellow-bellied marmot (Marmota flaviventris) during hibernation. Physiol. Zool. 67(5), 1213–1229. https://doi.org/10.1086/physzool.67.5.30163890 (1994).
Google Scholar
Silva, S. I., Jaksic, F. M. & Bozinovic, F. Interplay between metabolic rate and diet quality in the South American fox Pseudalopex culpaeus. Comp. Biochem. Physiol. Mol Integr. Physiol. 137(1), 33–38. https://doi.org/10.1016/j.cbpb.2003.09.022 (2004).
Google Scholar
Rewkiewicz-Dziarska, A., Wielopolska, A. & Gill, J. Hematological indices of Apodemus agrarius (Pallas, 1771) from different urban environments. Bull. Acad. Polon. Sci. Ser. Sci. Biol. 25(4), 261–268 (1977).
Google Scholar
Ohrnberger, S. A., Hambly, C., Speakman, J. R. & Valencak, T. G. Limits to sustained energy intake XXXII: Hot again: Dorsal shaving increases energy intake and milk output in golden hamsters (Mesocricetus auratus). J Exp. Biol. https://doi.org/10.1242/jeb.230383 (2020).
Google Scholar
Speakman, J. R. & Król, E. The heat dissipation limit theory and evolution of life histories in endotherms—Time to dispose of the disposable soma theory?. Integr. Comp. Biol. 50(5), 793–807. https://doi.org/10.1093/icb/icq049 (2010).
Google Scholar
Diamond, S. E., Chick, L. D., Perez, A., Strickler, S. A. & Martin, R. A. Evolution of thermal tolerance and its fitness consequences: Parallel and non-parallel responses to urban heat islands across three cities. Proc. R. Soc. B Biol. Sci. 285(1882), 20180036. https://doi.org/10.1098/rspb.2018.0036 (2018).
Google Scholar
Isaksson, C. & Hahs, A. Urbanization, oxidative stress and inflammation: A question of evolving, acclimatizing or coping with urban environmental stress. Funct. Ecol. 29(7), 913–923. https://doi.org/10.1111/1365-2435.12477 (2015).
Google Scholar
Sokolova, I. M. & Lannig, G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: Implications of global climate change. Clim. Res. 37(2–3), 181–201 (2008).
Google Scholar
Carey, H. V., Andrews, M. T. & Martin, S. L. Mammalian hibernation: Cellular and molecular responses to depressed metabolism and low temperature. Physiol. Rev. 83(4), 1153–1181 (2003).
Google Scholar
Pereira, M. E., Aines, J. & Scheckter, J. L. Tactics of heterothermy in eastern gray squirrels (Sciurus carolinensis). J. Mammal. 83(2), 467–477 (2002).
Google Scholar
Breuner, C. W., Wingfield, J. C. & Romero, L. M. Diel rhythms of basal and stress-induced corticosterone in a wild, seasonal vertebrate. Gambel’s white-crowned sparrow. J Exp. Zool. 284(3), 334–342. https://doi.org/10.1002/(SICI)1097-010X(19990801)284:3%3c334::AID-JEZ11%3e3.0.CO;2-# (1999).
Google Scholar
Careau, V., Thomas, D., Humphries, M. M. & Réale, D. Energy metabolism and animal personality. Oikos 117(5), 641–653. https://doi.org/10.1111/j.0030-1299.2008.16513.x (2008).
Google Scholar
Fletcher, Q. E. et al. Seasonal stage differences overwhelm environmental and individual factors as determinants of energy expenditure in free-ranging red squirrels. Funct. Ecol. 26(3), 677–687. https://doi.org/10.1111/j.1365-2435.2012.01975.x (2012).
Google Scholar
Barthel, L. & Berger, A. Unexpected gene-flow in urban environments: The example of the European Hedgehog. Animals 10(12), 2315. https://doi.org/10.3390/ani10122315 (2020).
Google Scholar
Fusco, N. A., Carlen, E. J. & Munshi-South, J. Urban landscape genetics: are biologists keeping up with the pace of urbanization?. Current Landsc. Ecol. Rep. 6(2), 35–45. https://doi.org/10.1007/s40823-021-00062-3 (2021).
Google Scholar
Ziege, M. et al. Population genetics of the European rabbit along a rural-to-urban gradient. Sci. Rep. 10(1), 2448. https://doi.org/10.1038/s41598-020-57962-3 (2020).
Google Scholar
Morash, A. J., Neufeld, C., MacCormack, T. J. & Currie, S. The importance of incorporating natural thermal variation when evaluating physiological performance in wild species. J. Exp. Biol. 221(14), jeb164673. https://doi.org/10.1242/jeb.164673 (2018).
Google Scholar
Pörtner, H.-O., et al. Climate change 2022: Impacts, adaptation and vulnerability. IPCC Sixth Assessment Report (2022).
Anderies, J. M., Katti, M. & Shochat, E. Living in the city: Resource availability, predation, and bird population dynamics in urban areas. J. Theor. Biol. 247(1), 36–49. https://doi.org/10.1016/j.jtbi.2007.01.030 (2007).
Google Scholar
Shochat, E. Credit or debit? Resource input changes population dynamics of city-slicker birds. Oikos 106(3), 622–626. https://doi.org/10.1111/j.0030-1299.2004.13159.x (2004).
Google Scholar
Koprowski, J. L. Handling tree squirrels with a safe and efficient restraint. Wildl. Soc. B 30(1), 101–103. https://doi.org/10.2307/3784642 (2002).
Google Scholar
Magris, L. & Gurnell, J. Population ecology of the red squirrel (Sciurus vulgaris) in a fragmented woodland ecosystem on the Island of Jersey Channel Islands. J. Zool. 256(1), 99–112. https://doi.org/10.1017/s0952836902000134 (2002).
Google Scholar
Bethge, J., Wist, B., Stalenberg, E. & Dausmann, K. Seasonal adaptations in energy budgeting in the primate Lepilemur leucopus. J Comp. Physiol. B 187(5–6), 827–834. https://doi.org/10.1007/s00360-017-1082-9 (2017).
Google Scholar
Dausmann, K. H., Glos, J. & Heldmaier, G. Energetics of tropical hibernation. J Comp. Physiol. B 179(3), 345–357. https://doi.org/10.1007/s00360-008-0318-0 (2009).
Google Scholar
Kobbe, S., Nowack, J. & Dausmann, K. H. Torpor is not the only option: Seasonal variations of the thermoneutral zone in a small primate. J. Comp. Physiol. B 184(6), 789–797. https://doi.org/10.1007/s00360-014-0834-z (2014).
Google Scholar
Lighton, J. R. Measuring Metabolic Rates: A Manual for Scientists (Oxford University Press, 2018).
Google Scholar
Bethge, J., Razafimampiandra, J. C., Wulff, A. & Dausmann, K. H. Sportive lemurs elevate their metabolic rate during challenging seasons and do not enter regular heterothermy. Conserv. Physiol. 9(1), coab075. https://doi.org/10.1093/conphys/coab075 (2021).
Google Scholar
Reher, S., Ehlers, J., Rabarison, H. & Dausmann, K. H. Short and hyperthermic torpor responses in the Malagasy bat Macronycteris commersoni reveal a broader hypometabolic scope in heterotherms. J. Comp. Physiol. B 188(6), 1015–1027. https://doi.org/10.1007/s00360-018-1171-4 (2018).
Google Scholar
Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J Stat. Softw. 40(3), 1–25 (2011).
Google Scholar
Wickham, H., François, R., Henry, L. & Müller, K. RStudio. dplyr: A Grammar of Data Manipulation (1.0. 7) (2021).
Zeileis, A. & Grothendieck, G. zoo: S3 infrastructure for regular and irregular time series. J. Stat. Softw. 14(6), 1–27. https://doi.org/10.18637/jss.v014.i06 (2005).
Google Scholar
Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer Science & Business Media, New York, 2008).
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).
Google Scholar
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82(13), 1–26 (2017).
Google Scholar
Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, 2016).
Google Scholar
Fox, J. Effect displays in R for generalised linear models. J. Stat. Softw. 8(15), 1–27 (2003).
Google Scholar
Garamszegi, L. Z. et al. Changing philosophies and tools for statistical inferences in behavioral ecology. Behav. Ecol. 20(6), 1363–1375. https://doi.org/10.1093/beheco/arp137 (2009).
Google Scholar
Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65(1), 13–21. https://doi.org/10.1007/s00265-010-1037-6 (2010).
Google Scholar
Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour?. J. Anim. Ecol. 75(5), 1182–1189. https://doi.org/10.1111/j.1365-2656.2006.01141.x (2006).
Google Scholar
Barton, K. & Barton, M. K. MuMIn: Multi-Model Inference. R package version 1.43.17; https://CRAN.R-project.org/package=MuMIn (2020).
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R ( Springer Science & Business Media 2009).
Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Soc. Method. Res. 33(2), 261–304 (2004).
Google Scholar
Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19(2), 101–108. https://doi.org/10.1016/j.tree.2003.10.013 (2004).
Google Scholar
Lorah, J. Effect size measures for multilevel models: Definition, interpretation, and TIMSS example. Large-scale Assess. Educ. 6(1), 8. https://doi.org/10.1186/s40536-018-0061-2 (2018).
Google Scholar
Selya, A. S., Rose, J. S., Dierker, L. C., Hedeker, D. & Mermelstein, R. J. A practical guide to calculating cohen’s f2, a measure of local effect size, from PROC MIXED. Front. Psychol. 3, 111–111. https://doi.org/10.3389/fpsyg.2012.00111 (2012).
Google Scholar
Lüdecke, D. sjPlot: Data visualization for statistics in social science. R package version 2.8.5 2020; https://CRAN.R-project.org/package=sjPlot (2020).
Nakagawa, S., Johnson, P. C. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14(134), 20170213 (2017).
Google Scholar
Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biol. Rev. Camb. Philos. Soc. 85(4), 935–956. https://doi.org/10.1111/j.1469-185X.2010.00141.x (2010).
Google Scholar
Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8(11), 1639–1644. https://doi.org/10.1111/2041-210X.12797 (2017).
Google Scholar
Source: Ecology - nature.com