in

Harnessing soil biodiversity to promote human health in cities

  • UNDESA. World urbanization prospects. Demographic Research 12, 1–103 (2018).

  • Oke, C. et al. Cities should respond to the biodiversity extinction crisis. npj Urban Sustain. 1, 11 (2021).

    Article 

    Google Scholar 

  • World Bank. A catalogue of nature-based solutions for urban resilience. www.worldbank.org (2021).

  • Elmqvist, T. et al. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 14, 101–108 (2015).

    Article 

    Google Scholar 

  • Aerts, R., Honnay, O. & Van Nieuwenhuyse, A. Biodiversity and human health: Mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br. Med. Bull. 127, 5–22 (2018).

    Article 

    Google Scholar 

  • Reyes-Riveros, R. et al. Linking public urban green spaces and human well-being: A systematic review. Urban For. Urban Green 61, 127105 (2021).

    Article 

    Google Scholar 

  • Bardgett, R. D. & Van Der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

    Article 
    CAS 

    Google Scholar 

  • Mehring, A. S. & Levin, L. A. Potential roles of soil fauna in improving the efficiency of rain gardens used as natural stormwater treatment systems. J. Appl. Ecol. 52, 1445–1454 (2015).

    Article 

    Google Scholar 

  • Brevik, E. C. et al. Soil and human health: current status and future needs. Air, Soil Water Res. 13, 1–23 (2020).

    Article 

    Google Scholar 

  • Silver, W. L., Perez, T., Mayer, A. & Jones, A. R. The role of soil in the contribution of food and feed. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200181 (2021).

    Article 
    CAS 

    Google Scholar 

  • De Deyn, G. B. & Kooistra, L. The role of soils in habitat creation, maintenance and restoration. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200170 (2021).

    Article 

    Google Scholar 

  • Samaddar, S. et al. Role of soil in the regulation of human and plant pathogens: Soils’ contributions to people. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200179 (2021).

    Article 

    Google Scholar 

  • Thiele-Bruhn, S. The role of soils in provision of genetic, medicinal and biochemical resources. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200183 (2021).

    Article 
    CAS 

    Google Scholar 

  • O’Riordan, R., Davies, J., Stevens, C., Quinton, J. N. & Boyko, C. The ecosystem services of urban soils: A review. Geoderma 395, 115076 (2021).

    Article 

    Google Scholar 

  • Banerjee, S. & Heijden, M. G. A. Soil microbiomes and one health. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-022-00779-w (2022).

  • Schmidt, D. J. et al. Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nat. Ecol. Evol. 1, 0123 (2017).

    Article 

    Google Scholar 

  • Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the Anthropocene. Curr. Biol. 29, R1036–R1044 (2019).

    Article 
    CAS 

    Google Scholar 

  • Fenoglio, M. S., Rossetti, M. R. & Videla, M. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429 (2020).

    Article 

    Google Scholar 

  • Guilland, C., Maron, P. A., Damas, O. & Ranjard, L. Biodiversity of urban soils for sustainable cities. Environ. Chem. Lett. 16, 1267–1282 (2018).

    Article 
    CAS 

    Google Scholar 

  • Milano, V. et al. The effect of urban park landscapes on soil Collembola diversity: A Mediterranean case study. Landsc. Urban Plan. 180, 135–147 (2018).

    Article 

    Google Scholar 

  • Merckx, T. et al. Body-size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116 (2018).

    Article 
    CAS 

    Google Scholar 

  • Zhu, Y. G. et al. Soil biota, antimicrobial resistance and planetary health. Environ. Int. 131, 105059 (2019).

    Article 

    Google Scholar 

  • Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity: A monitoring and indicator system can inform policy. Science 371, 239–241 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. R. Soc. B Biol. Sci. 281, 20141988 (2014).

    Article 

    Google Scholar 

  • Delgado-Baquerizo, M. et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7, eabg5809 (2021).

    Article 
    CAS 

    Google Scholar 

  • Braaker, S., Ghazoul, J., Obrist, M. K. & Moretti, M. Habitat connectivity shapes urban arthropod communities: the key role of green roofs. Ecology 95, 1010–1021 (2014).

    Article 
    CAS 

    Google Scholar 

  • Lin, B. B., Philpott, S. M. & Jha, S. The future of urban agriculture and biodiversity-ecosystem services: Challenges and next steps. Basic Appl. Ecol. 16, 189–201 (2015).

    Article 

    Google Scholar 

  • Baruch, Z. et al. Increased plant species richness associates with greater soil bacterial diversity in urban green spaces. Environ. Res. 196, 110425 (2021).

    Article 
    CAS 

    Google Scholar 

  • Robinson, J. M. et al. Vertical stratification in urban green space aerobiomes. Environ. Health Perspect. 128, 1–12 (2020).

    Article 

    Google Scholar 

  • Robinson, J. M. et al. Exposure to airborne bacteria depends upon vertical stratification and vegetation complexity. Sci. Rep. 11, 9516 (2021).

    Article 
    CAS 

    Google Scholar 

  • Nugent, A. & Allison, S. D. A framework for soil microbial ecology in urban ecosystems. Ecosphere 13, 1–20 (2022).

    Article 

    Google Scholar 

  • Knop, E. Biotic homogenization of three insect groups due to urbanization. Glob. Chang. Biol. 22, 228–236 (2016).

    Article 

    Google Scholar 

  • Li, X. et al. Management effects on soil nematode abundance differ among functional groups and land-use types at a global scale. J. Anim. Ecol. 91, 1770–1780 (2022).

    Article 

    Google Scholar 

  • McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).

    Article 

    Google Scholar 

  • Piano, E. et al. Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob. Chang. Biol. 26, 1196–1211 (2020).

    Article 

    Google Scholar 

  • Joimel, S. et al. Contrasting homogenization patterns of plant and collembolan communities in urban vegetable gardens. Urban Ecosyst. 22, 553–566 (2019).

    Article 

    Google Scholar 

  • Ge, B., Mehring, A. S. & Levin, L. A. Urbanization alters belowground invertebrate community structure in semi-arid regions: A comparison of lawns, biofilters and sage scrub. Landsc. Urban Plan. 192, 103664 (2019).

    Article 

    Google Scholar 

  • Tóth, Z. & Hornung, E. Taxonomic and functional response of millipedes (Diplopoda) to urban soil disturbance in a metropolitan area. Insects 11, 25 (2020).

    Article 

    Google Scholar 

  • Selhorst, A. & Lal, R. Net carbon sequestration potential and emissions in home lawn turfgrasses of the United States. Environ. Manage. 51, 198–208 (2013).

    Article 

    Google Scholar 

  • Cividini, S. & Montesanto, G. Aggregative behavior and intraspecific communication mediated by substrate-borne vibrations in terrestrial arthropods: An exploratory study in two species of woodlice. Behav. Process. 157, 422–430 (2018).

    Article 

    Google Scholar 

  • Bray, N., Thompson, G. L., Fahey, T., Kao-Kniffin, J. & Wickings, K. Soil macroinvertebrates alter the fate of root and rhizosphere carbon and nitrogen in a turfgrass lawn. Soil Biol. Biochem. 148, 107903 (2020).

    Article 
    CAS 

    Google Scholar 

  • Barthod, J., Dignac, M. F. & Rumpel, C. Effect of decomposition products produced in the presence or absence of epigeic earthworms and minerals on soil carbon stabilization. Soil Biol. Biochem. 160, 108308 (2021).

    Article 
    CAS 

    Google Scholar 

  • Aquino, R. S. S. et al. Filamentous fungi vectored by ants (Hymenoptera: Formicidae) in a public hospital in north-eastern Brazil. J. Hosp. Infect. 83, 200–204 (2013).

    Article 
    CAS 

    Google Scholar 

  • Hodges, M. N. & McKinney, M. L. Urbanization impacts on land snail community composition. Urban Ecosyst. 21, 721–735 (2018).

    Article 

    Google Scholar 

  • Saeki, I., Niwa, S., Osada, N., Azuma, W. & Hiura, T. Contrasting effects of urbanization on arboreal and ground-dwelling land snails: role of trophic interactions and habitat fragmentation. Urban Ecosyst. 23, 603–614 (2020).

    Article 

    Google Scholar 

  • Buczkowski, G. & Bertelsmeier, C. Invasive termites in a changing climate: A global perspective. Ecol. Evol. 7, 974–985 (2017).

    Article 

    Google Scholar 

  • Ford, A. E. S., Graham, H. & White, P. C. L. Integrating human and ecosystem health through ecosystem services frameworks. Ecohealth 12, 660–671 (2015).

    Article 

    Google Scholar 

  • Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).

    Article 
    CAS 

    Google Scholar 

  • Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, 1–12 (2019).

    Article 

    Google Scholar 

  • Song, C., Jin, K. & Raaijmakers, J. M. Designing a home for beneficial plant microbiomes. Curr. Opin. Plant Biol. 62, 102025 (2021).

    Article 
    CAS 

    Google Scholar 

  • Neiderud, C. J. How urbanization affects the epidemiology of emerging infectious diseases. African J. Disabil. 5, 27060 (2015).

    Google Scholar 

  • Liddicoat, C. et al. Can bacterial indicators of a grassy woodland restoration inform ecosystem assessment and microbiota-mediated human health? Environ. Int. 129, 105–117 (2019).

    Article 

    Google Scholar 

  • Baumgardner, D. J. Soil-related bacterial and fungal infections. J. Am. Board Fam. Med. 25, 734–744 (2012).

    Article 

    Google Scholar 

  • Khan, N. A. Acanthamoeba: Biology and increasing importance in human health. FEMS Microbiol. Rev. 30, 564–595 (2006).

    Article 

    Google Scholar 

  • Lindsay, R. G., Watters, G., Johnson, R., Ormonde, S. E. & Snibson, G. R. Acanthamoeba keratitis and contact lens wear. Clin. Exp. Optom. 90, 351–360 (2007).

    Article 

    Google Scholar 

  • Fields, Barry, Robert, Benson & Besser, R. Legionella and Legionnaires’ Disease: 25 Years of Investigation – Comparative study of selective media for isolation of Legionella pneumophila from potable water. Clin. Microbiol. Rev. 15, 506 (2002).

    Article 

    Google Scholar 

  • Van Elsas, J. D. et al. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. USA 109, 1159–1164 (2012).

    Article 

    Google Scholar 

  • Chen, X. D. et al. Soil biodiversity and biogeochemical function in managed ecosystems. Soil Res. 58, 1–20 (2019).

    Article 

    Google Scholar 

  • Hernando-Amado, S., Coque, T. M., Baquero, F. & Martínez, J. L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 4, 1432–1442 (2019).

    Article 
    CAS 

    Google Scholar 

  • Wang, F. H. et al. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environ. Sci. Technol. 48, 9079–9085 (2014).

    Article 
    CAS 

    Google Scholar 

  • Cave, R., Cole, J. & Mkrtchyan, H. V. Surveillance and prevalence of antimicrobial resistant bacteria from public settings within urban built environments: Challenges and opportunities for hygiene and infection control. Environ. Int. 157, 106836 (2021).

    Article 
    CAS 

    Google Scholar 

  • Alharbi, J. S., Alawadhi, Q. & Leather, S. R. Monomorium ant is a carrier for pathogenic and potentially pathogenic bacteria. BMC Res. Notes 12, 230 (2019).

    Article 

    Google Scholar 

  • Guimaraes, A. J., Gomes, K. X., Cortines, J. R., Peralta, J. M. & Peralta, R. H. S. Acanthamoeba spp. as a universal host for pathogenic microorganisms: One bridge from environment to host virulence. Microbiol. Res. 193, 30–38 (2016).

    Article 

    Google Scholar 

  • Vieira, A., Ramesh, A., Seddon, A. M. & Karlyshev, A. V. CmeABC multidrug efflux pump promotes Campylobacter jejuni survival and multiplication in Acanthamoeba polyphaga. Appl. Environ. Microbiol. 83, 1–13 (2017).

    Article 

    Google Scholar 

  • Wyres, K. L. & Holt, K. E. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr. Opin. Microbiol. 45, 131–139 (2018).

    Article 
    CAS 

    Google Scholar 

  • Holt, K. E. et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl. Acad. Sci. USA 112, E3574–E3581 (2015).

    Article 
    CAS 

    Google Scholar 

  • Bethony, J. et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367, 1521–1532 (2006).

  • Pullan, R. L., Smith, J. L., Jasrasaria, R. & Brooker, S. J. Global numbers of infection and disease burden of soil-transmitted helminth infections in 2010. Parasites and Vectors 7, 1–19 (2014).

    Article 

    Google Scholar 

  • Kemp, S. F. et al. Expanding habitat of the imported fire ant (Solenopsis invicta): A public health concern. J. Allergy Clin. Immunol. 105, 683–691 (2000).

    Article 
    CAS 

    Google Scholar 

  • Estrada-Peña, A. & Jongejan, F. Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission Climate, niche, ticks, and models: what they are and how we should interpret them. Exp. Appl. Acarol. 23, 685–715 (1999).

    Article 

    Google Scholar 

  • Nasir, S., Akram, W., Khan, R. R., Arshad, M. & Nasir, I. Paederusbeetles: The agent of human dermatitis. J. Venom. Anim. Toxins Incl. Trop. Dis. 21, 1–6 (2015).

    Article 

    Google Scholar 

  • Santos, M. N. Research on termites in urban areas: approaches and gaps. https://doi.org/10.1007/s11252-020-00944-0 (2020).

  • National Academies of Sciences, Engineering, and M. Advancing urban sustainability in China and the United States. (The National Academies Press, https://doi.org/10.17226/25794 2020).

  • Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).

    Article 
    CAS 

    Google Scholar 

  • Velasco, E., Segovia, E., Choong, A. M. F., Lim, B. K. Y. & Vargas, R. Carbon dioxide dynamics in a residential lawn of a tropical city. J. Environ. Manage. 280, 111752 (2021).

    Article 
    CAS 

    Google Scholar 

  • Thakur, M. P. & Geisen, S. Trophic regulations of the soil microbiome. Trends Microbiol. 27, 771–780 (2019).

    Article 
    CAS 

    Google Scholar 

  • Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).

    Article 

    Google Scholar 

  • Jiao, S., Lu, Y. & Wei, G. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Glob. Chang. Biol. 28, 140–153 (2022).

    Article 
    CAS 

    Google Scholar 

  • Hu, J. et al. Rhizosphere microbiome functional diversity and pathogen invasion resistance build up during plant development. Environ. Microbiol. 22, 5005–5018 (2020).

    Article 

    Google Scholar 

  • Jayaraman, S. et al. Disease-suppressive soils—beyond food production: a critical review. J. Soil Sci. Plant Nutr. 21, 1437–1465 (2021).

    Article 

    Google Scholar 

  • Chen, Q. L. et al. Loss of soil microbial diversity exacerbates spread of antibiotic resistance. Soil Ecol. Lett. 1, 3–13 (2019).

    Article 

    Google Scholar 

  • Innocenti, G. & Sabatini, M. A. Collembola and plant pathogenic, antagonistic and arbuscular mycorrhizal fungi: a review. Bull. Insectology 71, 71–76 (2018).

    Google Scholar 

  • Jones, M. S. et al. Organic farms conserve a dung beetle species capable of disrupting fly vectors of foodborne pathogens. Biol. Control 137, 104020 (2019).

  • Huang, K. et al. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis. Bioresour. Technol. 297, 122451 (2020).

    Article 
    CAS 

    Google Scholar 

  • Li, G., Sun, G. X., Ren, Y., Luo, X. S. & Zhu, Y. G. Urban soil and human health: a review. Eur. J. Soil Sci. 69, 196–215 (2018).

    Article 

    Google Scholar 

  • Cachada, A., Pato, P., Rocha-Santos, T., da Silva, E. F. & Duarte, A. C. Levels, sources and potential human health risks of organic pollutants in urban soils. Sci. Total Environ. 430, 184–192 (2012).

    Article 
    CAS 

    Google Scholar 

  • Chen, M. et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols, and heavy metals by composting: Applications, microbes and future research needs. Biotechnol. Adv. 33, 745–755 (2015).

    Article 
    CAS 

    Google Scholar 

  • González Henao, S. & Ghneim-Herrera, T. Heavy metals in soils and the remediation potential of bacteria associated With the plant microbiome. Front. Environ. Sci. 9, 1–17 (2021).

    Article 

    Google Scholar 

  • Meynet, P. et al. Effect of activated carbon amendment on bacterial community structure and functions in a PAH impacted urban soil. Environ. Sci. Technol. 46, 5057–5066 (2012).

    Article 
    CAS 

    Google Scholar 

  • Xiong, W., Delgado-Baquerizo, M., Shen, Q. & Geisen, S. Pedogenesis shapes predator-prey relationships within soil microbiomes. Sci. Total Environ. 828, 154405 (2022).

    Article 
    CAS 

    Google Scholar 

  • Duan, G. et al. Interactions among soil biota and their applications in synergistic bioremediation of heavy-metal contaminated soils. Shengwu Gongcheng Xuebao/Chinese J. Biotechnol. 36, 455–470 (2020).

    CAS 

    Google Scholar 

  • Beesley, L. & Dickinson, N. Carbon and trace element fluxes in the pore water of an urban soil following green waste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biol. Biochem. 43, 188–196 (2011).

    Article 
    CAS 

    Google Scholar 

  • Zhu, D. et al. Deciphering potential roles of earthworms in mitigation of antibiotic resistance in the soils from diverse ecosystems. Environ. Sci. Technol. 55, 7445–7455 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bowers, R. M., McLetchie, S., Knight, R. & Fierer, N. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J. 5, 601–612 (2011).

    Article 
    CAS 

    Google Scholar 

  • Selway, C. A. et al. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environ. Int. 145, 106084 (2020).

    Article 

    Google Scholar 

  • Ottman, N. et al. Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. J. Allergy Clin. Immunol. 143, 1198–1206.e12 (2019).

    Article 
    CAS 

    Google Scholar 

  • Roslund, M. I. et al. Long-term biodiversity intervention shapes health-associated commensal microbiota among urban day-care children. Environ. Int. 157, 106811 (2021).

    Article 

    Google Scholar 

  • Roslund, M. I. et al. A Placebo-controlled double-blinded test of the biodiversity hypothesis of immune-mediated diseases: Environmental microbial diversity elicits changes in cytokines and increase in T regulatory cells in young children. Ecotoxicol. Environ. Saf. 242, 113900 (2022).

  • Rook, G., Bäckhed, F., Levin, B. R., McFall-Ngai, M. J. & McLean, A. R. Evolution, human-microbe interactions, and life history plasticity. Lancet 390, 521–530 (2017).

    Article 

    Google Scholar 

  • Flandroy, L. et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 627, 1018–1038 (2018).

    Article 
    CAS 

    Google Scholar 

  • Reber, S. O. et al. Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice. Proc. Natl. Acad. Sci. USA 113, E3130–E3139 (2016).

    Article 
    CAS 

    Google Scholar 

  • Ege, M. J. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364, 701–9 (2011).

    Article 
    CAS 

    Google Scholar 

  • Stein, M. M. et al. Innate immunity and asthma risk in amish and hutterite farm children. N. Engl. J. Med. 375, 411–421 (2016).

    Article 
    CAS 

    Google Scholar 

  • Roslund, M. I. et al. Environmental Studies biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci. Adv. 6, eaba2578 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl. Acad. Sci. USA 109, 8334–8339 (2012).

    Article 
    CAS 

    Google Scholar 

  • Franklin, P. J. Indoor air quality and respiratory health of children. Paediatr. Respir. Rev. 8, 281–286 (2007).

    Article 

    Google Scholar 

  • Adams, R. I. et al. Microbial exposures in moisture-damaged schools and associations with respiratory symptoms in students: A multi-country environmental exposure study. Indoor Air 31, 1952–1966 (2021).

    Article 
    CAS 

    Google Scholar 

  • Dunn, R. R., Reese, A. T. & Eisenhauer, N. Biodiversity–ecosystem function relationships on bodies and in buildings. Nat. Ecol. Evol. 3, 7–9 (2019).

    Article 

    Google Scholar 

  • Gilbert, J. A. & Stephens, B. Microbiology of the built environment. Nat. Rev. Microbiol. 16, 661–670 (2018).

    Article 
    CAS 

    Google Scholar 

  • Flies, E. J., Clarke, L. J., Brook, B. W. & Jones, P. Urbanisation reduces the abundance and diversity of airborne microbes – but what does that mean for our health? A systematic review. Sci. Total Environ. 738, 140337 (2020).

    Article 
    CAS 

    Google Scholar 

  • Berg, G., Mahnert, A. & Moissl-Eichinger, C. Beneficial effects of plant-associated microbes on indoor microbiomes and human health? Front. Microbiol. 5, 1–5 (2014).

    Article 

    Google Scholar 

  • Parajuli, A. et al. Urbanization reduces transfer of diverse environmental microbiota indoors. Front. Microbiol. 9, 1–13 (2018).

    Article 

    Google Scholar 

  • Kirjavainen, P. V. et al. Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat. Med. 25, 1089–1095 (2019).

    Article 
    CAS 

    Google Scholar 

  • Sonnenburg, E. D. & Sonnenburg, J. L. The ancestral and industrialized gut microbiota and implications for human health. Nat. Rev. Microbiol. 17, 383–390 (2019).

    Article 
    CAS 

    Google Scholar 

  • Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article 
    CAS 

    Google Scholar 

  • Blum, W. E. H., Zechmeister-Boltenstern, S. & Keiblinger, K. M. Does soil contribute to the human gut microbiome? Microorganisms 7, 287 (2019).

    Article 

    Google Scholar 

  • Liddicoat, C. et al. Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci. Total Environ. 701, 134684 (2020).

    Article 
    CAS 

    Google Scholar 

  • Tun, H. M. et al. Exposure to household furry pets influences the gut microbiota of infants at 3-4 months following various birth scenarios. Microbiome 5, 1–14 (2017).

    Article 

    Google Scholar 

  • Brame, J. E., Liddicoat, C., Abbott, C. A. & Breed, M. F. The potential of outdoor environments to supply beneficial butyrate-producing bacteria to humans. Sci. Total Environ. 777, 146063 (2021).

    Article 
    CAS 

    Google Scholar 

  • Elmqvist, T. et al. Urbanization, biodiversity and ecosystem services: challenges and opportunities: a global assessment. https://doi.org/10.1007/978-94-007-7088-1_23 (2013).

  • Breed, M. F. et al. Ecosystem Restoration: A Public Health Intervention. Ecohealth 18, 269–271 (2021).

    Article 

    Google Scholar 

  • Aronson, M. F. J. et al. Biodiversity in the city: key challenges for urban green space management. Front. Ecol. Environ. 15, 189–196 (2017).

    Article 

    Google Scholar 

  • Contos, P., Wood, J. L., Murphy, N. P. & Gibb, H. Rewilding with invertebrates and microbes to restore ecosystems: Present trends and future directions. Ecol. Evol. 11, 7187–7200 (2021).

    Article 

    Google Scholar 

  • Auclerc, A. et al. Fostering the use of soil invertebrate traits to restore ecosystem functioning. Geoderma 424, 116019 (2022).

    Article 

    Google Scholar 

  • Mills, J. G. et al. Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restor. Ecol. 28, S322–S334 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Effects of thinning on soil nutrient availability and fungal community composition in a plantation medium-aged pure forest of Picea koraiensis

    Responsive design meets responsibility for the planet’s future