in

Identifying ways of producing pigs more sustainably: tradeoffs and co-benefits in land and antimicrobial use

  • Herrero, M., Thornton, P. K., Gerber, P. & Reid, R. S. Livestock, livelihoods and the environment: Understanding the trade-offs. Curr. Opin. Environ. Sustain. 1, 111–120 (2009).

    Article 

    Google Scholar 

  • Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gerber, P. J. et al. Tackling climate change through livestock—A global assessment of emissions and mitigation opportunities. Food Agric. Organ. U. N. (FAO) Rome https://doi.org/10.1016/j.anifeedsci.2011.04.074 (2013).

    Article 

    Google Scholar 

  • Xu, X. et al. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2, 724–732 (2021).

    Article 
    CAS 

    Google Scholar 

  • Landers, T. F., Cohen, B., Wittum, T. E. & Larson, E. L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 127, 4–22 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Boeckel, T. P. et al. Reducing antimicrobial use in food animals. Science (80-) 357, 1350–1352 (2017).

    Article 
    ADS 

    Google Scholar 

  • Henchion, M., Moloney, A. P., Hyland, J., Zimmermann, J. & McCarthy, S. Review: Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal 15, 100287 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lassaletta, L. et al. Future global pig production systems according to the shared socioeconomic pathways. Sci. Total Environ. 665, 739–751 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mehrabi, Z., Gill, M., van Wijk, M., Herrero, M. & Ramankutty, N. Livestock policy for sustainable development. Nat. Food 1(3), 160–165 (2020).

    Article 

    Google Scholar 

  • Godfray, C. J. H. et al. Meat consumption, health, and the environment. Science 361, eaam5324 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science (80-) 360, 987–992 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Balmford, A. et al. The environmental costs and benefits of high-yield farming. Nat. Sustain. 1, 477–485 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Resare Sahlin, K., Röös, E. & Gordon, L. J. ‘Less but better’ meat is a sustainability message in need of clarity. Nat. Food 1(9), 520–522 (2020).

    Article 

    Google Scholar 

  • van Zanten, H. H. E., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E. & de Boer, I. J. M. Global food supply: Land use efficiency of livestock systems. Int. J. Life Cycle Assess. 21, 747–758 (2016).

    Article 

    Google Scholar 

  • Roos, E. et al. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob. Environ. Chang. Policy Dimens. 47, 1–12 (2017).

    Article 

    Google Scholar 

  • Lipsitch, M., Singer, R. S. & Levin, B. R. Antibiotics in agriculture: When is it time to close the barn door?. Proc. Natl. Acad. Sci. USA 99, 5752–5754 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balmford, A. Concentrating versus spreading our footprint: how to meet humanity’s needs at least cost to nature. J. Zool. 315, 79–109 (2021).

    Article 

    Google Scholar 

  • Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ye, X. et al. Livestock-associated methicillin and multidrug resistant S. aureus in humans is associated with occupational pig contact, not pet contact. Sci. Rep. 6, 1–9 (2016).

    Google Scholar 

  • Laxminarayan, R. et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 13, 1057–1098 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 399, 629–655 (2022).

    Article 
    CAS 

    Google Scholar 

  • Smith, D. L., Harris, A. D., Johnson, J. A., Silbergeld, E. K. & Morris, J. G. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc. Natl. Acad. Sci. USA 99, 6434–6439 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Albernaz-Gonçalves, R., Antillón, G. O. & Hötzel, M. J. Linking animal welfare and antibiotic use in pig farming—A review. Animals 12, 1–21 (2022).

    Article 

    Google Scholar 

  • Elliott, K. A., Kenny, C. & Madan, J. A global treaty to reduce antimicrobial use in livestock. Cent. Glob. Dev. 102, 27 (2017).

    Google Scholar 

  • Van Boeckel, T. P. et al. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. 112, 5649–5654 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalmar, L. et al. HAM-ART: An optimised culture-free Hi–C metagenomics pipeline for tracking antimicrobial resistance genes in complex microbial communities. PLoS Genet. 18, e1009776 (2021).

    Article 

    Google Scholar 

  • Zhu, Y. G. et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 110, 3435–3440 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tiseo, K., Huber, L., Gilbert, M., Robinson, T. P. & Van Boeckel, T. P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 9, 1–14 (2020).

    Article 

    Google Scholar 

  • Rushton, J. et al. Antimicrobial resistance the use of antimicrobials in the livestock sector. https://doi.org/10.1787/5jxvl3dwk3f0-en (2014)

  • Gonzalez-Mejia, A., Styles, D., Wilson, P. & Gibbons, J. Metrics and methods for characterizing dairy farm intensification using farm survey data. Plus One https://doi.org/10.1371/journal.pone.0195286 (2018).

    Article 

    Google Scholar 

  • Struik, P. C. & Kuyper, T. W. Sustainable intensification in agriculture: The richer shade of green. A review. Agron. Sustain. Dev. 37, 1–15 (2017).

    Article 

    Google Scholar 

  • Vissers, L. S. M., Saatkamp, H. W. & Oude Lansink, A. G. J. M. Analysis of synergies and trade-offs between animal welfare, ammonia emission, particulate matter emission and antibiotic use in Dutch broiler production systems. Agric. Syst. 189, 103070 (2021).

    Article 

    Google Scholar 

  • Garnett, T. et al. Sustainable intensification in agriculture: Premises and policies. Science (81-) 341, 33–34 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bright-Ponte, S. J. Antimicrobial use data collection in animal agriculture. Zoonoses Public Health 67, 1–5 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Price, L. B., Koch, B. J. & Hungate, B. A. Ominous projections for global antibiotic use in food-animal production. Proc. Natl. Acad. Sci. USA 112, 5554–5555 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marshall, B. M. & Levy, S. B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 24, 718–733 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • EMA. Categorisation of antibiotics in the European Union. Eur. Med. Agency 31, 73 (2019).

    Google Scholar 

  • Vellinga, T. V et al. in Title Methodology used in FeedPrint: a tool quantifying greenhouse gas emissions of feed production and utilization. http://www.livestockresearch.wur.nl (2013).

  • Benjamins, D. in Oxford Sandy & Black pigs as a method of weed control. When do they stop being an asset and start becoming a problem? (2002).

  • Henney, J. in An evaluation of the use of pigs as a method of bracken control Dissertation. (2012).

  • Espinosa, R., Tago, D. & Treich, N. Infectious diseases and meat production. Environ. Resour. Econ. 76, 1019–1044 (2020).

    Article 

    Google Scholar 

  • Gilbert, W., Thomas, L. F., Coyne, L. & Rushton, J. Review: Mitigating the risks posed by intensification in livestock production: The examples of antimicrobial resistance and zoonoses. Animal 15, 100123 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • DEFRA. Monthly UK statistics on cattle, sheep and pig slaughter and meat production—Statistics notice (data to March 2022)—GOV.UK. 2022 https://www.gov.uk/government/statistics/cattle-sheep-and-pig-slaughter/monthly-uk-statistics-on-cattle-sheep-and-pig-slaughter-and-meat-production-statistics-notice-data-to-february-2022.

  • Driver, A. Highlighting the differences—How UK welfare standards compare with our competitors. PIGWORLD (2017).

  • DEFRA. in Code of practice for the welfare of PIGS © National Pig Association. www.gov.uk/defra (2020).

  • Red Tractor. Pigs Standards. 17–19 (2017).

  • QMS. 2020 Pig Standards. www.gov.uk/animal-welfare-in-severe-weather%0A. https://assurance.redtractor.org.uk/contentfiles/Farmers-6801.pdf?_=636504999253492650 (2019).

  • RSPCA. RSPCA Welfare Standards for Pigs. (2016).

  • Soil Association. Soil Association organic standards farming and growing. Farming and Growing Organic Standards www.soilassociation.org/organicstandards (2016).

  • Organic Food Federation. Organic food federation production standards. (2016).

  • Moakes, S., Lampkin, N. & Gerrard, C. L. Organic farm incomes in England and Wales 2010/11 (OF 0373). (2012).

  • Hossard, L. et al. A meta-analysis of maize and wheat yields in low-input vs. conventional and organic systems. Agron. J. 108, 1155–1167 (2016).

    Article 
    CAS 

    Google Scholar 

  • De Ponti, T., Rijk, B. & Van Ittersum, M. K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 108, 1–9 (2012).

    Article 

    Google Scholar 

  • FAOSTAT. http://www.fao.org/faostat/en/#home (2022).

  • EMA. Principles on assignment of defined daily dose for animals (DDDvet) and defined course dose for animals (DCDvet). 44, 68 (2015).

  • Ogle, D., Doll, J., Wheeler, P. & Dinno, A. Package ‘FSA’. (2022).

  • Kassambara, A. Ggpubr: ‘Ggplot2’ Based Publication Ready Plots. (2021).

  • Mangiafico, S. Package ‘ rcompanion ’. (2022).

  • Arnold, J. B. Package ‘ ggthemes ’. (2021).

  • Pedersen, T. L. Patchwork: The Composer of Plots. Cran (2020).

  • Wickham, H. et al. Package ‘ggplot2’. (2021).


  • Source: Ecology - nature.com

    Using combustion to make better batteries

    Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam.