Hatton, P. J., Castanha, C., Torn, M. S. & Bird, J. A. Litter type control on soil C and N stabilization dynamics in a temperate forest. Glob. Change Biol. 21(3), 1358–1367. https://doi.org/10.1111/gcb.12786 (2015).
Google Scholar
Lladó, S., López-Mondéjar, R. & Baldrian, P. Forest soil bacteria: Diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. 81(2), e00063–16. https://doi.org/10.1128/mmbr.00063-16 (2017).
Google Scholar
Ranjard, L. & Richaume, A. Quantitative and qualitative microscale distribution of bacteria in soil. Res. Microbiol. 152(8), 707–716. https://doi.org/10.1016/S0923-2508(01)01251-7 (2001).
Google Scholar
Nannipieri, P., Badalucco, L., Benbi, D. K., & Nieder, R. Handbook of processes and modelling in the soil-plant system. Biological Processes, 57–82 (2003).
Wixon, D. L. & Balser, T. C. Complexity, climate change and soil carbon: A systems approach to microbial temperature response. Syst. Res. Behav. Sci. 26(5), 601–620. https://doi.org/10.1002/sres.995 (2009).
Google Scholar
Van Der Heijden, M. G., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11(3), 296–310. https://doi.org/10.1111/j.1461-0248.2007.01139.x (2008).
Google Scholar
Tisdall, J. M. Possible role of soil microorganisms in aggregation in soils. Plant Soil 159, 115–121. https://doi.org/10.1007/BF00000100 (1994).
Google Scholar
Ingham, E. R. Soil biology primer, Chapter 4: Soil fungus. Soil and Water Conservation 22–23 (Soil and Water Conservation Society, 2009).
Stevens, W. B., Sainju, U. M., Caesar, A. J., West, M. & Gaskin, J. F. Soil-aggregating bacterial community as affected by irrigation, tillage, and cropping system in the northern great plains. Soil Sci. 179(1), 11–20 (2014).
Google Scholar
Islam, K. R. Lecture on Soil Physics, Personal Collection of K. Islam (Ohio State University, 2008).
López-Mondéjar, R., Zühlke, D., Becher, D., Riedel, K. & Baldrian, P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci. Rep. 6(1), 25279. https://doi.org/10.1038/srep25279 (2016).
Google Scholar
Wardle, D. A., Nilsson, M. C. & Zackrisson, O. Fire-derived charcoal causes loss of forest humus. Science 320(5876), 629–629. https://doi.org/10.1126/science.1154960 (2008).
Google Scholar
Shelobolina, E., Roden, E., Benzine, J. & Xiong, M. Y. Using phyllosilicate-Fe (II)-oxidizing soil bacteria to improve Fe and K plant nutrition. U.S. Patent Application 14/924,397 (Wisconsin Alumni Research Foundation, 2016).
Kumar, A., & Verma, J. P. The role of microbes to improve crop productivity and soil health. In Ecological Wisdom Inspired Restoration Engineering 249–265. https://doi.org/10.1007/978-981-13-0149-0_14 (2019).
Dick, W. Lecture on Biochemistry Process in Soil Microbiology, Personal Collection of W. Dick (The Ohio State University School of Environment and Natural Resources, 2009).
Reed, S. C., Cleveland, C. C. & Townsend, A. R. Functional ecology of free-living nitrogen fixation: A contemporary perspective. Annu. Rev. Ecol. Evol. Syst. 42, 489–512. https://doi.org/10.1146/annurev-ecolsys-102710-145034 (2011).
Google Scholar
Sylvia, D. M., Fuhrmann, J. J., Hartel, P. G. & Zuberer, D. A. Principles and Applications of Soil Microbiology (No. QR111 S674 2005) 2nd edn. (Prentice Hall, 2005).
Torsvik, V., Daae, F. L., Sandaa, R. A. & Øvreås, L. Novel techniques for analysing microbial diversity in natural and perturbed environments. J. Biotechnol. 64(1), 53–62. https://doi.org/10.1016/s0168-1656(98)00103-5 (1998).
Google Scholar
Roesch, L. F. W. et al. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1(4), 283–290. https://doi.org/10.1038/ismej.2007.53 (2007).
Google Scholar
Rousk, J., Brookes, P. C. & Bååth, E. The microbial PLFA composition as affected by pH in an arable soil. Soil Biol. Biochem. 42(3), 516–520. https://doi.org/10.1016/j.soilbio.2009.11.026 (2010).
Google Scholar
Brockett, B. F., Prescott, C. E. & Grayston, S. J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 44(1), 9–20. https://doi.org/10.1016/j.soilbio.2011.09.003 (2012).
Google Scholar
Urbanová, M., Šnajdr, J. & Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 84, 53–64. https://doi.org/10.1016/j.soilbio.2015.02.011 (2015).
Google Scholar
Binkley, D. & Vitousek, P. M. Soil nutrient availability. In Plant Physiological, Field Methods and Instrumentation (eds Pearey, R. W. et al.) 75–96 (Champan and Hall, 1989).
Google Scholar
Ruess, J. O. & Innis, G. S. A grassland nitrogen flow simulation mode. Ecology 58, 348–429. https://doi.org/10.2307/1935612 (1977).
Google Scholar
Kumar, M., Sharma, C. M. & Rajwar, G. S. Physico-chemical properties of forest soil along altitudinal gradient in Garhwal Himalaya. J. Hill Res. 17(2), 60–64 (2004).
Smit, E. et al. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl. Environ. Microbiol. 67(5), 2284–2291. https://doi.org/10.1128/AEM.67.5.2284-2291.2001 (2001).
Google Scholar
Qazi, P. H. Bioprospecting Himalayan microbial diversity. ENVIS Newsletter on Himalayan Ecology 12(4). http://gbpihedenvis.nic.in/ENVIS%20Newsletter/vol%2012(4).pdf (2015).
Pradhan, S. et al. Bacterial biodiversity from Roopkund glacier, Himalayan Mountain ranges, India. Extremophiles 14, 377–395. https://doi.org/10.1007/s00792-010-0318-3 (2010).
Google Scholar
Shivaji, S. et al. Bacterial diversity of soil in the vicinity of Pindari glacier, Himalayan Mountain ranges, India, using culturable bacteria and soil 16S rRNA gene clones. Extremophiles 15, 1–22. https://doi.org/10.1007/s00792-010-0333-4 (2011).
Google Scholar
Das, J. & Dangar, T. K. Microbial population dynamics, especially stress tolerant Bacillus thuringiensis, in partially anaerobic rice field soils during post-harvest period of the Himalayan, island, brackish water and coastal habitats of India. World J. Microbiol. Biotechnol. 24, 1403–1410. https://doi.org/10.1007/s11274-007-9620-3 (2008).
Google Scholar
Lyngwi, N. A., Koijam, K., Sharma, D. & Joshi, S. R. Cultivable bacterial diversity along the altitudinal zonation and vegetation range of tropical Eastern Himalaya. Rev. Biol. Trop. 61(1), 467–490. https://doi.org/10.15517/rbt.v61i1.11141 (2013).
Google Scholar
Pandey, S., Singh, S., Yadav, A. N., Nain, L. & Saxena, A. K. Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci. Biotechnol. Biochem. 77(7), 1474–1480. https://doi.org/10.1271/bbb.130121 (2013).
Google Scholar
Venkatachalam, S., Gowdaman, V. & Prabagaran, S. R. Culturable and culture-independent bacterial diversity and the prevalence of cold-adapted enzymes from the Himalayan Mountain ranges of India and Nepal. Microb. Ecol. 69, 472–491. https://doi.org/10.1007/s00248-014-0476-4 (2015).
Google Scholar
Saxena, A. K., Yadav, A. N., Kaushik, R., Tyagi, S. P., & Shukla, L. Biotechnological applications of microbes isolated from cold environments in agriculture and allied sectors. In International Conference on Low Temperature Science and Biotechnological Advances, Vol. 104 (Society of Low Temperature Biology, 2015).
Singh, R. N. et al. First high-quality draft genome sequence of a plant growth promoting and cold active enzyme producing psychrotrophic Arthrobacter agilis strain L77. Stand. Genom. Sci. 11, 1–9. https://doi.org/10.1186/s40793-016-0176-4 (2016).
Google Scholar
Mushtaq, H. et al. Biochemical characterization and functional analysis of heat stable high potential protease of Bacillus amyloliquefaciens strain HM48 from soils of Dachigam National Park in Kashmir Himalaya. Biomolecules 11(1), 117. https://doi.org/10.3390/biom11010117 (2021).
Google Scholar
Maharana, A. K. & Ray, P. Isolation and screening of cold active extracellular enzymes producing psychrotrophic bacteria from soil of Jammu City. Biosci. Biotechnol. Res. Asia 10(1), 267–273. https://doi.org/10.13005/bbra/1120 (2013).
Google Scholar
Rehakova, K., Chlumska, Z. & Dolezal, J. Soil cyanobacterial and microalgal diversity in dry mountains of Ladakh, NW Himalaya, as related to site, altitude, and vegetation. Microb. Ecol. 62, 337–346. https://doi.org/10.1007/s00248-011-9878-8 (2011).
Google Scholar
Rehakova, K. et al. Bacterial community of cushion plant Thylacospermum ceaspitosum on elevational gradient in the Himalayan cold desert. Front. Microbiol. 6, 304. https://doi.org/10.3389/fmicb.2015.00304 (2015).
Google Scholar
Gupta, P. & Vakhlu, J. Culturable bacterial diversity and hydrolytic enzymes from Drass, a cold desert in India. Afr. J. Microbiol. Res. 9, 1866–1876. https://doi.org/10.5897/AJMR2015.7424 (2015).
Google Scholar
Yadav, A. N. et al. Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J. Microbiol. Biotechnol. 31, 95–108. https://doi.org/10.1007/s11274-014-1768-z (2015).
Google Scholar
Farooq, S., Nazir, R., Ganai, B. A., Mushtaq, H. & Dar, G. J. Psychrophilic and psychrotrophic bacterial diversity of Himalayan Thajwas glacial soil, India. Biologia 77, 203–213. https://doi.org/10.1007/s11756-021-00915-6 (2022).
Google Scholar
Ahmad, N., Johri, S., Abdin, M. Z. & Qazi, G. N. Molecular characterization of bacterial population in the forest soil of Kashmir, India. World J. Microbiol. Biotechnol. 25, 107–113. https://doi.org/10.1007/s11274-008-9868-2 (2009).
Google Scholar
Thakur, D., Yadav, A., Gogoi, B. K. & Bora, T. C. Isolation and screening of Streptomyces in soil of protected forest areas from the states of Assam and Tripura, India, for antimicrobial metabolites. J. Mycol. Méd. 17(4), 242–249. https://doi.org/10.1016/j.mycmed.2007.08.001 (2007).
Google Scholar
Rina, K., Hiral, P., Payal, P., Dharaiya, N. & Patel, R. K. Study on microbial diversity of Wild Ass Sanctuary, Little Rann of Kutch, Gujarat, India. ICFAI Univ. J. Life Sci. 3(1), 34–41 (2009).
Das, S., Saikia, P., Baruah, P. P. & Chakraborty, A. Isolation and identification of soil bacteria collected from Dibru-Saikhowa, the National Park and Biosphere Reserve Forest of Assam, India. Int. J. Sci. Res. (IJSR), 1937–1940 (2016).
De Mandal, S., Lalremsanga, H. T. & Kumar, N. S. Bacterial diversity of Murlen National Park located in Indo-Burman Biodiversity hotspot region: A metagenomic approach. Genom. Data 5, 25–26. https://doi.org/10.1016/j.gdata.2015.04.025 (2015).
Google Scholar
Megha, B., Sejal, P., Puja, P. & Jasrai, Y. T. Isolation and identification of soil microflora of national parks of Gujarat, India. Int. J. Curr. Microbiol. Appl. Sci. 4(3), 421–429 (2015).
Kumar, A., Singh, R. D., Patra, A. K., Sahu, S. K. & Singh, M. Impact of oak and pine canopy cover on soil biochemical and microbial indicators of Binsar Wildlife Sanctuary in the Western Himalaya, India. J. Pure Appl. Microbiol. 11(3), 1599–1607. https://doi.org/10.22207/JPAM.11.3.47 (2017).
Google Scholar
Dhiman, P., Mehta, J. P., Singh, P. & andSharesthBaldotra, S. S.,. Effect of prescribe fire on bacterial abundance and their enzymatic activity in burnt and unburnt soil of Chilla Forest, Raja Ji National Park, Uttarakhand, India. Plant Arch. 18(1), 1125–1128 (2018).
Behera, P. et al. Spatial and temporal heterogeneity in the structure and function of sediment bacterial communities of a tropical mangrove forest. Environ. Sci. Pollut. Res. 26, 3893–3908 (2019).
Google Scholar
Sharma, P. & Thakur, D. Antimicrobial biosynthetic potential and diversity of culturable soil actinobacteria from forest ecosystems of Northeast India. Sci. Rep. 10(1), 1–18. https://doi.org/10.1038/s41598-020-60968-6 (2020).
Google Scholar
Dar, G. H., Bhagat, R. C. & Khan, M. A. Biodiversity of the Kashmir Himalaya (Valley Book House, 2002).
Shameem, S. A., Kangroo, N. I. & Bhat, G. A. Comparative assessment of edaphic features and herbaceous diversity in lower Dachigam national park, Kashmir, Himalaya. J. Ecol. Nat. Environ. 3(6), 196–204 (2011).
Thakur, M., Sharma, L. K., Charoo, S. A. & Sathyakumar, S. Conflict bear translocation: Investigating population genetics and fate of bear translocation in Dachigam National Park, Jammu and Kashmir, India. PLoS One 10, e0132005. https://doi.org/10.1371/journal.pone.0132005 (2015).
Google Scholar
Ahmad, K., Qureshi, Q., Agoramoorthy, G. & Nigam, P. Habitat use patterns and food habits of the Kashmir red deer or Hangul (Cervus elaphus hanglu) in Dachigam National Park, Kashmir, India. Ethol. Ecol. Evol. 28(1), 85–101. https://doi.org/10.1080/03949370.2015.1018955 (2016).
Google Scholar
Jammu and Kashmir Forest Department (JKFD). Handbook of Forest Statistics (Jammu and Kashmir Forest Department, 2011).
Anderson, J. M. & Ingram, J. S. I. A Handbook of Methods 62–65 (CAB International, 1993).
Joshi, S. R., Chauhan, M. A. N. J. U., Sharma, G. D. & Mishra, R. R. Effect of deforestation on microbes, VAM fungi and their enzymatic activity in Eastern Himalaya. In Studies in Himalayan Ecobiology 141–152 (Today and Tommorows Publication, 1991).
Jackson, M. L. Soil Chemical Analysis 151–154 (Prentice-Hall, 1958). https://doi.org/10.1002/jpln.19590850311.
Google Scholar
Gardner, W. H. Water content. Methods of soil analysis: Part 1. Phys. Mineral. Methods 5, 493–544 (1986).
Walkley, A. & Black, I. A. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 37(1), 29–38 (1934).
Google Scholar
Bremner, J. M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 55(1), 1–23 (1960).
Google Scholar
Coursey, D. G. & Eggins, H. O. W. Microorganismes responsables de l’altération de l’huile de palme pendant le stockage. Oléagineux 16, 227–233 (1961).
Google Scholar
Kumar, R., Acharya, C. & Joshi, S. R. Isolation and analyses of uranium tolerant Serratia marcescens strains and their utilization for aerobic uranium U (VI) bioadsorption. J. Microbiol. 49, 568–574. https://doi.org/10.1007/s12275-011-0366-0 (2011).
Google Scholar
Team, R. C. R: A language and environment for statistical computing. https://www.R-project.org (R Foundation for Statistical Computing, 2017).
Bergey, D. H. & Holt, J. G. Bergey’s Manual of Determinative Bacteriology (Lippincott Williams & Wilkins, 1994).
Gürtler, V. & Stanisich, V. A. New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiology 142(1), 3–16 (1996).
Google Scholar
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
Sorensen, T. A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skar. 5, 1–34 (1948).
Muhumuza, M. & Balkwill, K. Factors affecting the success of conserving biodiversity in national parks: A review of case studies from Africa. Int. J. Biodivers. https://doi.org/10.1155/2013/798101 (2013).
Google Scholar
Yaqoob, A., Yunus, M., Bhat, G. A. & Singh, D. P. Phytodiversity and seasonal variations in the soil characteristics of shrublands of Dachigam National Park, Jammu and Kashmir, India. Clim. Change Environ. Sustain. 3(2), 137–143. https://doi.org/10.5958/2320-642X.2015.00015.0 (2015).
Google Scholar
Mir, Z. R., Noor, A., Habib, B. & Veeraswami, G. G. Seasonal population density and winter survival strategies of endangered Kashmir gray langur (Semnopithecus ajax) in Dachigam National Park, Kashmir, India. Springer Plus 4, 1–8. https://doi.org/10.1186/s40064-015-1366-z (2015).
Google Scholar
Buchan, G. D. Soil temperature regime. In Soil and Environmental Analysis: Physical Methods (eds Smith, K. A. & Mullins, C.) 539–594 (Marcel Dekker, 2001).
Buchan, G. D. Temperature effects in soil. In Encyclopedia of Agrophysics, Encyclopedia of Earth Sciences Series (Springer, 2011).
Chiemeka, I. U. Soil temperature profile at Uturu, Nigeria. Pac. J. Sci. Technol. 11(1), 478–482 (2010).
Decker, K. L. M., Wang, D., Waite, C. & Scherbatskoy, T. Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont. Soil Sci. Soc. Am. J. 67(4), 1234–1242. https://doi.org/10.2136/sssaj2003.1234 (2003).
Google Scholar
Abu-Hamdeh, N. H. & Reeder, R. C. Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter. Soil Sci. Soc. Am. J. 64(4), 1285–1290. https://doi.org/10.2136/sssaj2000.6441285x (2000).
Google Scholar
Lu, S., Ren, T., Gong, Y. & Horton, R. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. J. 71(1), 8–14. https://doi.org/10.2136/sssaj2006.0041 (2007).
Google Scholar
Elizbarashvili, E. S., Urushadze, T. F., Elizbarashvili, M. E., Elizbarashvili, S. E. & Schaefer, M. K. Temperature regime of some soil types in Georgia. Eurasian Soil Sci. 43(4), 427–435. https://doi.org/10.1134/S1064229310040083 (2010).
Google Scholar
Walter, H. & Burnett, J. H. Ecology of Tropical and Subtropical Vegetation Vol. 539, xviii+-539 (Oliver and Boyd, 1971).
Callaway, R. M. Positive interactions and interdependence in plant communities. Springer Science Business Media https://doi.org/10.1007/978-1-4020-6224-7 (2007).
Google Scholar
Song, Y. et al. Effects of vegetation height and density on soil temperature variations. Chin. Sci. Bull. 58(8), 907–912. https://doi.org/10.1007/s11434-012-5596-y (2013).
Google Scholar
Dimri, B. M., Singh, S. B., Baneriee, S. K. & Singh, B. Relation of age and dominance of tree species with soil chemical attributes in Kalimpong and Kurseong District of West Bengal. Indian For. 113(4), 307–311 (1987).
Jackson, R. B., Mooney, H. A. & Schulze, E. D. A global budget for fine root biomass, surface area, and nutrient contents. Proc. Natl. Acad. Sci. 94(14), 7362–7366. https://doi.org/10.1073/pnas.94.14.7362 (1997).
Google Scholar
Wilson, S. D. Competition between grasses and woody plants. In Population Biology of Grasses (ed. Cheplick, G. P.) 231–254 (Cambridge University Press, 1998).
Google Scholar
Reth, S., Reichstein, M. & Falge, E. The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux—A modified model. Plant Soil 268, 21–33. https://doi.org/10.1007/s11104-005-0175-5 (2005).
Google Scholar
Zinke, P. J. The pattern of influence of individual forest trees on soil properties. Ecology 43(1), 130–133 (1962).
Google Scholar
Patric, J. H. Forest management and nutrient cycling in eastern hardwoods Vol. 324 (Forest Service, US Department of Agriculture, Northeastern Forest Experiment Station, 1975).
Mroz, G. D., Jurgensen, M. F. & Frederick, D. J. Soil nutrient changes following whole tree harvesting on three northern hardwood sites. Soil Sci. Soc. Am. J. 49(6), 1552–1557. https://doi.org/10.2136/sssaj1985.03615995004900060044x (1985).
Google Scholar
Maggs, J. & Hewett, B. Organic C and nutrients in surface soils from some primary rainforests, derived grasslands and secondary rainforests on the Atherton Tableland in North East Queensland. Soil Res. 31(3), 343–350 (1993).
Google Scholar
Hart, S. C. & Perry, D. A. Transferring soils from high-to low-elevation forests increases nitrogen cycling rates: Climate change implications. Glob. Change Biol. 5(1), 23–32 (1999).
Google Scholar
Atlas, R. M. Diversity of microbial communities. Adv. Microb. Ecol., 1–47 (1984).
Dimitriu, P. A. & Grayston, S. J. Relationship between soil properties and patterns of bacterial β-diversity across reclaimed and natural boreal forest soils. Microb. Ecol. 59, 563–573. https://doi.org/10.1007/s00248-009-9590-0 (2010).
Google Scholar
Bele, S. S. Soil Testing and Soil Microbiology 79–108 (Satyam Publishers and Distributors, 2014). https://doi.org/10.1007/s11356-018-3927-5.
Google Scholar
Cattelan, A. J., Hartel, P. G. & Fuhrmann, J. J. Bacterial composition in the rhizosphere of nodulating and non-nodulating soybean. Soil Sci. Soc. Am. J. 62(6), 1549–1555. https://doi.org/10.2136/sssaj1998.03615995006200060011x (1998).
Google Scholar
Silva, P. D. & Nahas, E. Bacterial diversity in soil in response to different plans, phosphate fertilizers and liming. Braz. J. Microbiol. 33, 304–310 (2002).
Google Scholar
Begum, K. et al. Isolation and characterization of bacteria with biochemical and pharmacological importance from soil samples of Dhaka City. Dhaka Univ. J. Pharm. Sci. 16(1), 129–136. https://doi.org/10.3329/dujps.v16i1.33390 (2017).
Google Scholar
Liu, D., Liu, Y., Fang, S. & Tian, Y. Tree species composition influenced microbial diversity and nitrogen availability in rhizosphere soil. Plant Soil Environ. 61(10), 438–443. https://doi.org/10.17221/94/2015-PSE (2015).
Google Scholar
Chodak, M., Klimek, B., Azarbad, H. & Jaźwa, M. Functional diversity of soil microbial communities under Scots pine, Norway spruce, silver birch and mixed boreal forests. Pedobiologia 58(2–3), 81–88 (2015).
Google Scholar
Gartzia-Bengoetxea, N., Kandeler, E., de Arano, I. M. & Arias-González, A. Soil microbial functional activity is governed by a combination of tree species composition and soil properties in temperate forests. Appl. Soil. Ecol. 100, 57–64 (2016).
Google Scholar
Shameem, S. A., Mushtaq, H., Wani, A. A., Ahmad, N. & Hai, A. Phytodiversity of herbaceous vegetation in disturbed and undisturbed forest ecosystems of Pahalgam valley, Kashmir Himalaya, India. Br. J. Environ. Clim. Change 7(3), 148–167 (2017).
Google Scholar
Felske, A., Wolterink, A., Van Lis, R. & Akkermans, A. D. Phylogeny of the main bacterial 16S rRNA sequences in Drentse A grassland soils (The Netherlands). Appl. Environ. Microbiol. 64(3), 871–879. https://doi.org/10.1128/aem.64.3.871-879.1998 (1998).
Google Scholar
Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K. & Niklińska, M. Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann. Microbiol. 65, 1627–1637. https://doi.org/10.1007/s13213-014-1002-0 (2015).
Google Scholar
Lugo, M. A. et al. Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in South American Puna grassland. Microb. Ecol. 55, 705–713. https://doi.org/10.1007/s00248-007-9313-3 (2008).
Google Scholar
Wang, Q., Wang, S., Fan, B. & Yu, X. Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China: Effect of planting conifers with broadleaved species. Plant Soil 297, 201–211. https://doi.org/10.1007/s11104-007-9333-2 (2007).
Google Scholar
Nüsslein, K. & Tiedje, J. M. Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl. Environ. Microbiol. 65(8), 3622–3626. https://doi.org/10.1128/aem.65.8.3622-3626.1999 (1999).
Google Scholar
Hackl, E., Zechmeister-Boltenstern, S., Bodrossy, L. & Sessitsch, A. Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Appl. Environ. Microbiol. 70(9), 5057–5065. https://doi.org/10.1128/AEM.70.9.5057-5065.2004 (2004).
Google Scholar
Chan, C. et al. Vegetation cover of forest, shrub and pasture strongly influences soil bacterial community structure as revealed by 16S rRNA gene T-RFLP analysis. FEMS Microbiol. Ecol. 64(3), 449–458. https://doi.org/10.1111/j.1574-6941.2008.00488.x (2008).
Google Scholar
Adamczyk, B., Kitunen, V. & Smolander, A. Protein precipitation by tannins in soil organic horizon and vegetation in relation to tree species. Biol. Fertil. Soils 45(1), 55–64. https://doi.org/10.1007/s00374-008-0308-0 (2008).
Google Scholar
Kanerva, S., Kitunen, V., Loponen, J. & Smolander, A. Phenolic compounds and terpenes in soil organic horizon layers under silver birch, Norway spruce and Scots pine. Biol. Fertil. Soils 44(4), 547–556. https://doi.org/10.1007/s00374-007-0234-6 (2008).
Google Scholar
Ushio, M., Balser, T. C. & Kitayama, K. Effects of condensed tannins in conifer leaves on the composition and activity of the soil microbial community in a tropical montane forest. Plant Soil 365(1), 157–170. https://www.jstor.org/stable/42952341 (2013).
Lomolino, M. V. Elevation gradients of species-density: Historical and prospective views. Glob. Ecol. Biogeogr. 10(1), 3–13. https://doi.org/10.1046/j.1466-822x.2001.00229.x (2001).
Google Scholar
Thomson, B. C. et al. Vegetation affects the relative abundances of dominant soil bacterial taxa and soil respiration rates in an upland grassland soil. Microb. Ecol. 59(2), 335–343. https://doi.org/10.1007/s00248-009-9575-z (2010).
Google Scholar
May, R. M. Patterns of species abundance and diversity. In Ecology and Evolution of Communities (eds Cody, M. L. & Diamond, J. M.) 81–120 (Harvard University, 1975).
Kapur, M. & Jain, R. K. Microbial diversity: Exploring the unexplored. World Federation of Culture Collection Newsletter 39, 12–16 (2004).
Bryant, J. A. et al. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity. Proc. Natl. Acad. Sci. 105(Suppl 1), 11505–11511 (2008).
Google Scholar
Fierer, N. et al. Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 92(4), 797–804. https://doi.org/10.1890/10-1170.1 (2011).
Google Scholar
Source: Ecology - nature.com