in

Taxonomic composition, community structure and molecular novelty of microeukaryotes in a temperate oligomesotrophic lake as revealed by metabarcoding

  • Pawlowski, J. et al. CBOL Protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLOS Biol. 10, e1001419 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • del Campo, J. et al. The others: our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 29, 252–259 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Handbook of the Protists (Springer, 2017). https://doi.org/10.1007/978-3-319-28149-0.

  • Lang, B. F., O’Kelly, C., Nerad, T., Gray, M. W. & Burger, G. The closest unicellular relatives of animals. Curr. Biol. 12, 1773–1778 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • del Campo, J. et al. Ecological and evolutionary significance of novel protist lineages. Eur. J. Protistol. 55, 4–11 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grau-Bové, X. et al. Dynamics of genomic innovation in the unicellular ancestry of animals. Life 6, e26036 (2017).

    Google Scholar 

  • Gawryluk, R. M. R. et al. Non-photosynthetic predators are sister to red algae. Nature 572, 240–243 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gabr, A., Grossman, A. R. & Bhattacharya, D. Paulinella, a model for understanding plastid primary endosymbiosis. J. Phycol. 56, 837–843 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, Z., Karlsson, I., Geisen, S., Kowalchuk, G. & Jousset, A. Protists: Puppet masters of the rhizosphere microbiome. Trends Plant Sci. 24, 165–176 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Caron, D. A. New accomplishments and approaches for assessing protistan diversity and ecology in natural ecosystems. Bioscience 59, 287–299 (2009).

    Article 

    Google Scholar 

  • Gooday, A. J., Schoenle, A., Dolan, J. R. & Arndt, H. Protist diversity and function in the dark ocean: Challenging the paradigms of deep-sea ecology with special emphasis on foraminiferans and naked protists. Eur. J. Protistol. 75, 125721 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Stoecker, D. K., Johnson, M. D., de Vargas, C. & Not, F. Acquired phototrophy in aquatic protists. Aquat. Microb. Ecol. 57, 279–310 (2009).

    Article 

    Google Scholar 

  • Strom, S. L., Benner, R., Ziegler, S. & Dagg, M. J. Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol. Oceanogr. 42, 1364–1374 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Orsi, W. D. et al. Identifying protist consumers of photosynthetic picoeukaryotes in the surface ocean using stable isotope probing. Environ. Microbiol. 20, 815–827 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Corno, G. & Jürgens, K. Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Appl. Environ. Microbiol. 72, 78–86 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahé, F. et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat. Ecol. Evol. 1, 91 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).

    Article 

    Google Scholar 

  • Epstein, S. & López-García, P. “Missing” protists: a molecular prospective. Biodivers. Conserv. 17, 261–276 (2008).

    Article 

    Google Scholar 

  • López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C. & Moreira, D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607 (2001).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Lovejoy, C., Massana, R. & Pedrós-Alió, C. Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl. Environ. Microbiol. 72, 3085–3095 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Worden, A. Z., Cuvelier, M. L. & Bartlett, D. H. In-depth analyses of marine microbial community genomics. Trends Microbiol. 14, 331–336 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Countway, P. D. et al. Distinct protistan assemblages characterize the euphotic zone and deep sea (2500 m) of the western North Atlantic (Sargasso Sea and Gulf Stream). Environ. Microbiol. 9, 1219–1232 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Massana, R. & Pedrós-Alió, C. Unveiling new microbial eukaryotes in the surface ocean. Curr. Opin. Microbiol. 11, 213–218 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Alexander, E. et al. Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ. Microbiol. 11, 360–381 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Logares, R. et al. Patterns of rare and abundant marine microbial eukaryotes. Curr. Biol. 24, 813–821 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 150 (2015).

    Article 

    Google Scholar 

  • Fell, J. W., Scorzetti, G., Connell, L. & Craig, S. Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with <5% soil moisture. Soil Biol. Biochem. 38, 3107–3119 (2006).

    Article 
    CAS 

    Google Scholar 

  • Shen, C. et al. Contrasting elevational diversity patterns between eukaryotic soil microbes and plants. Ecology 95, 3190–3202 (2014).

    Article 

    Google Scholar 

  • Moon-van der Staay, S. Y. et al. Eukaryotic diversity in historical soil samples. FEMS Microbiol. Ecol. 57, 420–428 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Šlapeta, J., Moreira, D. & López-García, P. The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proc. R. Soc. B Biol. Sci. 272, 2073–2081 (2005).

    Article 

    Google Scholar 

  • Debroas, D. et al. Overview of freshwater microbial eukaryotes diversity: a first analysis of publicly available metabarcoding data. FEMS Microbiol Ecol. 93, 875 (2017).

    Article 

    Google Scholar 

  • Dodson, S. Predicting crustacean zooplankton species richness. Limnol. Oceanogr. 37, 848–856 (1992).

    Article 
    ADS 

    Google Scholar 

  • Reche, I., Pulido-Villena, E., Baquero, R. & Casamayor, E. Does ecosystem size determine aquatic bacterial richness?. Ecology 86, 1715–1722 (2005).

    Article 

    Google Scholar 

  • Villarino, E. et al. Large-scale ocean connectivity and planktonic body size. Nat. Commun. 9, 142 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Richter, D. et al. Genomic evidence for global ocean plankton biogeography shaped by large-scale current systems (2020).

  • Dias, M. S., Cornu, J.-F., Oberdorff, T., Lasso, C. A. & Tedesco, P. A. Natural fragmentation in river networks as a driver of speciation for freshwater fishes. Ecography 36, 683–689 (2013).

    Article 

    Google Scholar 

  • Charvet, S., Vincent, W. F., Comeau, A. M. & Lovejoy, C. Pyrosequencing analysis of the protist communities in a High Arctic meromictic lake: DNA preservation and change. Front. Microbiol. 3, 415 (2012).

    Article 

    Google Scholar 

  • Lepère, C., Domaizon, I., Hugoni, M., Vellet, A. & Debroas, D. Diversity and dynamics of active small microbial eukaryotes in the anoxic zone of a Freshwater Meromictic Lake (Pavin, France). Front. Microbiol. 7 (2016).

  • Boenigk, J. et al. Geographic distance and mountain ranges structure freshwater protist communities on a European scale. Metabarcoding Metagenom. 2 (2018).

  • Kammerlander, B. et al. High diversity of protistan plankton communities in remote high mountain lakes in the European Alps and the Himalayan mountains. FEMS Microbiol. Ecol. 91 (2015).

  • Filker, S., Sommaruga, R., Vila, I. & Stoeck, T. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns. Mol. Ecol. 25, 2286–2301 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stoeck, T. et al. A morphogenetic survey on ciliate plankton from a mountain lake pinpoints the necessity of lineage-specific barcode markers in microbial ecology. Environ. Microbiol. 16, 430–444 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Daniel, A. C., Pedrós-Alió, C., Pearce, D. A. & Alcamí, A. Composition and Interactions among Bacterial, Microeukaryotic, and T4-like Viral Assemblages in Lakes from Both Polar Zones. Front. Microbiol. 7, 337 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stoof-Leichsenring, K. R., Dulias, K., Biskaborn, B. K., Pestryakova, L. A. & Herzschuh, U. Lake-depth related pattern of genetic and morphological diatom diversity in boreal Lake Bolshoe Toko Eastern Siberia. PLoS ONE 15, e0230284 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lefranc, M., Thénot, A., Lepère, C. & Debroas, D. Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl. Environ. Microbiol. 71, 5935–5942 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lepère, C. et al. Geographic distance and ecosystem size determine the distribution of smallest protists in lacustrine ecosystems. FEMS Microbiol. Ecol. 85, 85–94 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Vega, J. C., De Hoyos, C., Aldasoro, J. & Miguel, J. Nuevos datos morfométricos para el Lago de Sanabria. Limnetica ISSN 0213-8409 Vol 24 No 1-2 2005 Ejemplar Dedic. XI Congr. Asoc. Esp. Limnol. III Congr. Ibérico Limnol. Pags 115–121 24 (2005).

  • Margalef, R. Los organismos indicadores en la limnología. (1955).

  • De Hoyos, C. & Comín, F. The importance of inter-annual variability for management. Hydrobiologia 395–396, 281–291 (1999).

    Article 

    Google Scholar 

  • Negro, A. I., De Hoyos, C. & Aldasoro, J. J. Diatom and desmid relationships with the environment in mountain lakes and mires of NW Spain. Hydrobiologia 505, 1–13 (2003).

    Article 

    Google Scholar 

  • Luque, J. A. Lake sediment response to land-use and climate change during the last 1000 years in the oligotrophic Lake Sanabria (northwest of Iberian Peninsula). Sediment. Geol. 148, 343–355 (2002).

    Article 
    ADS 

    Google Scholar 

  • Jambrina-Enríquez, M. et al. Timing of deglaciation and postglacial environmental dynamics in NW Iberia: the Sanabria Lake record. Q. Sci. Rev. 94, 136–158 (2014).

    Article 
    ADS 

    Google Scholar 

  • Pahissa, J., Fernández-Enríquez, C. & De Hoyos, C. Water quality of Lake Sanabria according to phytoplankton. A comparison with historical data. Limnetica 10, 527–540. https://doi.org/10.23818/limn.34.39 (2015).

    Article 

    Google Scholar 

  • Llorente, A. & Seoane, S. Changes in the phytoplankton community structure in a monomictic temperate lake. Limnetica 39, 469–485 (2020).

    Article 

    Google Scholar 

  • Vega, J. C. The Sanabria lake. The largest natural freshwater lake in Spain. Limnetica 8, 49–57 (1992).

    Article 

    Google Scholar 

  • Edmondson, W. T. Margalef, R. 1983. Limnología. Ediciones Omega, S.A., Barcelona. 1010 p. Limnol. Oceanogr. 29, 1349–1349 (1984).

  • Hoyos Alonso, C. de. Limnologia del lago de sanabria: variabilidad interanual del fitoplancton. (Universidad de Salamanca, 1997).

  • Rodríguez-Rodríguez, L., Monserrat, J.-S., M.J., D.-C., Rico, M. & Valero-Garcés, B. Last deglaciation in northwestern Spain: New chronological and geomorphologic evidence from the Sanabria Region. Geomorphology 135, 48–65 (2011).

  • Oterino, A. G. Lago de sanabria, presente y futuro de un ecosistema en desequilibrio (Antonio Guillén Oterino, 2015).

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597-604 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 7854 (2017).

    Article 

    Google Scholar 

  • Xie, Y. et al. Environmental DNA metabarcoding reveals primary chemical contaminants in freshwater sediments from different land-use types. Chemosphere 172, 201–209 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).

    Article 
    ADS 

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2009). https://doi.org/10.1007/978-0-387-98141-3.

    Book 
    MATH 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538 (2010).

    Article 

    Google Scholar 

  • Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berger, S. A. & Stamatakis, A. Aligning short reads to reference alignments and trees. Bioinformatics 27, 2068–2075 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive Tree Of Life v2: Online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 39, W475-478 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Çako, V., Baci, S. & Shena, M. Water turbidity as one of the trophic state indices in Butrinti Lake. J. Water Resour. Prot. 05, 1144–1148 (2013).

    Article 

    Google Scholar 

  • Chanudet, V. & Filella, M. Submicron organic matter in a peri-alpine, ultra-oligotrophic lake. Org. Geochem. 38, 2545 (2007).

    Article 

    Google Scholar 

  • Poikane, S. et al. Defining ecologically relevant water quality targets for lakes in Europe. J. Appl. Ecol. 51, 592–602 (2014).

    Article 
    CAS 

    Google Scholar 

  • Ministerio de Agricultura, Alimentación y Medio Ambiente. Real Decreto 817/2015, de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental. vol. BOE-A-2015-9806 80582-80677 (2015).

  • Dunthorn, M., Klier, J., Bunge, J. & Stoeck, T. Comparing the hyper-variable V4 and V9 regions of the small subunit rDNA for assessment of ciliate environmental diversity. J. Eukaryot. Microbiol. https://doi.org/10.1111/j.1550-7408.2011.00602.x (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, P. et al. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 115, 329–341 (2004).

    Article 

    Google Scholar 

  • Eckert, E. M. et al. Different substrates within a lake harbour connected but specialised microbial communities. Hydrobiologia 847, 1689–1704 (2020).

    Article 
    CAS 

    Google Scholar 

  • Piredda, R. et al. Diatom diversity through HTS-metabarcoding in coastal European seas. Sci. Rep. 8, 18059 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adl, S. M. et al. The revised classification of eukaryotes. J. Eukaryot. Microbiol. 59, 429–514 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nicholls, K. H. & Wujek, D. E. 12—Chrysophycean algae. in Freshwater Algae of North America (eds. Wehr, J. D. & Sheath, R. G.) 471–509 (Academic Press, 2003). https://doi.org/10.1016/B978-012741550-5/50013-1.

  • Cavalier-Smith, T., Chao, E. E. & Lewis, R. Multiple origins of Heliozoa from flagellate ancestors: New cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista. Mol. Phylogenet. Evol. 93, 331–362 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Okamoto, N. & Inouye, I. The Katablepharids are a distant sister group of the cryptophyta: A proposal for Katablepharidophyta Divisio nova/kathablepharida phylum novum based on SSU rDNA and beta-tubulin phylogeny. Protist 156, 163–179 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bråte, J. et al. Freshwater Perkinsea and marine-freshwater colonizations revealed by pyrosequencing and phylogeny of environmental rDNA. ISME J. 4, 1144–1153 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Frenken, T. et al. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environ. Microbiol. 19, 3802–3822 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Lefèvre, E. et al. Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environ. Microbiol. 9, 61–71 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Sime-Ngando, T., Lefevre, E. & Gleason, F. Hidden diversity among aquatic heterotrophic flagellates: Ecological potentials of zoosporic fungi. Hydrobiologia 659 (2011).

  • Powell, M. J. Looking at mycology with a Janus face: A glimpse at chytridiomycetes active in the environment. Mycologia 85, 1–20 (1993).

    Article 

    Google Scholar 

  • Shearer, C. A. et al. Fungal biodiversity in aquatic habitats. Biodivers. Conserv. 16, 49–67 (2007).

    Article 

    Google Scholar 

  • Jobard, M., Rasconi, S. & Sime-Ngando, T. Diversity and functions of microscopic fungi: A missing component in pelagic food webs. Aquat. Sci. 72 (2010).

  • Rasconi, S., Jobard, M. & Sime-Ngando, T. Parasitic fungi of phytoplankton: ecological roles and implications for microbial food webs. Aquat. Microb. Ecol. 62, 123–137 (2011).

    Article 

    Google Scholar 

  • Monchy, S. et al. Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environ. Microbiol. 13, 1433–1453 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Norén, F., Moestrup, Ø. & Rehnstam-Holm, A.-S. Parvilucifera infectans norén et moestrup gen. et sp. nov. (perkinsozoa phylum nov.): a parasitic flagellate capable of killing toxic microalgae. Eur. J. Protistol. 35, 233–254 (1999).

  • Erard-Le Denn, E., Chrétiennot-Dinet, M.-J. & Probert, I. First report of parasitism on the toxic dinoflagellate Alexandrium minutum Halim. Estuar. Coast. Shelf Sci. 50, 109–113 (2000).

    Article 
    ADS 

    Google Scholar 

  • Villalba, A., Reece, K. S., Ordás, M. C., Casas, S. M. & Figueras Huerta, A. Perkinsosis in molluscs: A review. https://doi.org/10.1051/alr:2004050 (2004).

    Article 

    Google Scholar 

  • Figueroa, R. I., Garcés, E., Massana, R. & Camp, J. Description, Host-specificity, and Strain Selectivity of the Dinoflagellate Parasite Parvilucifera sinerae sp.nov. (Perkinsozoa). (2008) https://doi.org/10.1016/j.protis.2008.05.003.

  • Leander, B. S. & Hoppenrath, M. Ultrastructure of a novel tube-forming, intracellular parasite of dinoflagellates: Parvilucifera prorocentri sp. nov. (Alveolata, Myzozoa). Eur. J. Protistol. 44, 55–70 (2008).

  • Richards, T. A., Vepritskiy, A. A., Gouliamova, D. E. & Nierzwicki-Bauer, S. A. The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environ. Microbiol. 7, 1413–1425 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lefèvre, E., Roussel, B., Amblard, C. & Sime-Ngando, T. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS ONE 3, e2324 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lepère, C., Domaizon, I. & Debroas, D. Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. Appl. Environ. Microbiol. 74, 2940–2949 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • del Campo, J. et al. Validation of a universal set of primers to study animal-associated microeukaryotic communities. Environ. Microbiol. 21, 3855–3861 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Cooper, J. A., Pillinger, J. M. & Ridge, I. Barley straw inhibits growth of some aquatic saprolegniaceous fungi. Aquaculture 156, 157–163 (1997).

    Article 

    Google Scholar 

  • van West, P. Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: new challenges for an old problem. Mycologist 20, 99–104 (2006).

    Article 

    Google Scholar 

  • Phillips, A. J., Anderson, V. L., Robertson, E. J., Secombes, C. J. & van West, P. New insights into animal pathogenic oomycetes. Trends Microbiol. 16, 13–19 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • del Campo, J. & Ruiz-Trillo, I. Environmental survey meta-analysis reveals hidden diversity among unicellular opisthokonts. Mol. Biol. Evol. 30, 802–805 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, Y. et al. Revisiting the phylogenetic position of Caullerya mesnili (Ichthyosporea), a common Daphnia parasite, based on 22 protein-coding genes. Mol. Phylogenet. Evol. 151, 106891 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Simon, M. et al. Marked seasonality and high spatial variability of protist communities in shallow freshwater systems. ISME J. 9, 1941–1953 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Richards, T. A. & Bass, D. Molecular screening of free-living microbial eukaryotes: diversity and distribution using a meta-analysis. Curr. Opin. Microbiol. 8, 240–252 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Annenkova, N. V., Giner, C. R. & Logares, R. Tracing the origin of planktonic protists in an ancient lake. Microorganisms 8, 543 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yi, Z. et al. High-throughput sequencing of microbial eukaryotes in Lake Baikal reveals ecologically differentiated communities and novel evolutionary radiations. FEMS Microbiol. Ecol. 93, 78458 (2017).

    Article 

    Google Scholar 

  • Mukherjee, I. et al. Widespread dominance of kinetoplastids and unexpected presence of diplonemids in deep freshwater lakes. Front. Microbiol. 10 (2019).

  • Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • López-García, P., Philippe, H., Gail, F. & Moreira, D. Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc. Natl. Acad. Sci. USA 100, 697–702 (2003).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Not, F. et al. Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes. Deep Sea Res. Part Oceanogr. Res. Pap. 55, 1456–1473 (2008).

  • Takishita, K., Yubuki, N., Kakizoe, N., Inagaki, Y. & Maruyama, T. Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extrem. Life Extreme Cond. 11, 563–576 (2007).

    Article 
    CAS 

    Google Scholar 

  • Orsi, W., Song, Y. C., Hallam, S. & Edgcomb, V. Effect of oxygen minimum zone formation on communities of marine protists. ISME J. 6, 1586–1601 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lesaulnier, C. et al. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ. Microbiol. 10, 926–941 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Torruella, G., Moreira, D. & López-García, P. Phylogenetic and ecological diversity of apusomonads, a lineage of deep-branching eukaryotes. Environ. Microbiol. Rep. 9, 113–119 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bass, D. et al. Rhizarian ‘novel clade 10’ revealed as abundant and diverse planktonic and terrestrial flagellates, including aquavolon n. gen. J. Eukaryot. Microbiol. 65, 828–842 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Study: Carbon-neutral pavements are possible by 2050, but rapid policy and industry action are needed

    Brown bear skin-borne secretions display evidence of individuality and age-sex variation