Pawlowski, J. et al. CBOL Protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLOS Biol. 10, e1001419 (2012).
Google Scholar
del Campo, J. et al. The others: our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 29, 252–259 (2014).
Google Scholar
Handbook of the Protists (Springer, 2017). https://doi.org/10.1007/978-3-319-28149-0.
Lang, B. F., O’Kelly, C., Nerad, T., Gray, M. W. & Burger, G. The closest unicellular relatives of animals. Curr. Biol. 12, 1773–1778 (2002).
Google Scholar
del Campo, J. et al. Ecological and evolutionary significance of novel protist lineages. Eur. J. Protistol. 55, 4–11 (2016).
Google Scholar
Grau-Bové, X. et al. Dynamics of genomic innovation in the unicellular ancestry of animals. Life 6, e26036 (2017).
Gawryluk, R. M. R. et al. Non-photosynthetic predators are sister to red algae. Nature 572, 240–243 (2019).
Google Scholar
Gabr, A., Grossman, A. R. & Bhattacharya, D. Paulinella, a model for understanding plastid primary endosymbiosis. J. Phycol. 56, 837–843 (2020).
Google Scholar
Gao, Z., Karlsson, I., Geisen, S., Kowalchuk, G. & Jousset, A. Protists: Puppet masters of the rhizosphere microbiome. Trends Plant Sci. 24, 165–176 (2019).
Google Scholar
Caron, D. A. New accomplishments and approaches for assessing protistan diversity and ecology in natural ecosystems. Bioscience 59, 287–299 (2009).
Google Scholar
Gooday, A. J., Schoenle, A., Dolan, J. R. & Arndt, H. Protist diversity and function in the dark ocean: Challenging the paradigms of deep-sea ecology with special emphasis on foraminiferans and naked protists. Eur. J. Protistol. 75, 125721 (2020).
Google Scholar
Stoecker, D. K., Johnson, M. D., de Vargas, C. & Not, F. Acquired phototrophy in aquatic protists. Aquat. Microb. Ecol. 57, 279–310 (2009).
Google Scholar
Strom, S. L., Benner, R., Ziegler, S. & Dagg, M. J. Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol. Oceanogr. 42, 1364–1374 (1997).
Google Scholar
Orsi, W. D. et al. Identifying protist consumers of photosynthetic picoeukaryotes in the surface ocean using stable isotope probing. Environ. Microbiol. 20, 815–827 (2018).
Google Scholar
Corno, G. & Jürgens, K. Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Appl. Environ. Microbiol. 72, 78–86 (2006).
Google Scholar
Mahé, F. et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat. Ecol. Evol. 1, 91 (2017).
Google Scholar
Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).
Google Scholar
Epstein, S. & López-García, P. “Missing” protists: a molecular prospective. Biodivers. Conserv. 17, 261–276 (2008).
Google Scholar
López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C. & Moreira, D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607 (2001).
Google Scholar
Lovejoy, C., Massana, R. & Pedrós-Alió, C. Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl. Environ. Microbiol. 72, 3085–3095 (2006).
Google Scholar
Worden, A. Z., Cuvelier, M. L. & Bartlett, D. H. In-depth analyses of marine microbial community genomics. Trends Microbiol. 14, 331–336 (2006).
Google Scholar
Countway, P. D. et al. Distinct protistan assemblages characterize the euphotic zone and deep sea (2500 m) of the western North Atlantic (Sargasso Sea and Gulf Stream). Environ. Microbiol. 9, 1219–1232 (2007).
Google Scholar
Massana, R. & Pedrós-Alió, C. Unveiling new microbial eukaryotes in the surface ocean. Curr. Opin. Microbiol. 11, 213–218 (2008).
Google Scholar
Alexander, E. et al. Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ. Microbiol. 11, 360–381 (2009).
Google Scholar
Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).
Google Scholar
Logares, R. et al. Patterns of rare and abundant marine microbial eukaryotes. Curr. Biol. 24, 813–821 (2014).
Google Scholar
de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 150 (2015).
Google Scholar
Fell, J. W., Scorzetti, G., Connell, L. & Craig, S. Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with <5% soil moisture. Soil Biol. Biochem. 38, 3107–3119 (2006).
Google Scholar
Shen, C. et al. Contrasting elevational diversity patterns between eukaryotic soil microbes and plants. Ecology 95, 3190–3202 (2014).
Google Scholar
Moon-van der Staay, S. Y. et al. Eukaryotic diversity in historical soil samples. FEMS Microbiol. Ecol. 57, 420–428 (2006).
Google Scholar
Šlapeta, J., Moreira, D. & López-García, P. The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proc. R. Soc. B Biol. Sci. 272, 2073–2081 (2005).
Google Scholar
Debroas, D. et al. Overview of freshwater microbial eukaryotes diversity: a first analysis of publicly available metabarcoding data. FEMS Microbiol Ecol. 93, 875 (2017).
Google Scholar
Dodson, S. Predicting crustacean zooplankton species richness. Limnol. Oceanogr. 37, 848–856 (1992).
Google Scholar
Reche, I., Pulido-Villena, E., Baquero, R. & Casamayor, E. Does ecosystem size determine aquatic bacterial richness?. Ecology 86, 1715–1722 (2005).
Google Scholar
Villarino, E. et al. Large-scale ocean connectivity and planktonic body size. Nat. Commun. 9, 142 (2018).
Google Scholar
Richter, D. et al. Genomic evidence for global ocean plankton biogeography shaped by large-scale current systems (2020).
Dias, M. S., Cornu, J.-F., Oberdorff, T., Lasso, C. A. & Tedesco, P. A. Natural fragmentation in river networks as a driver of speciation for freshwater fishes. Ecography 36, 683–689 (2013).
Google Scholar
Charvet, S., Vincent, W. F., Comeau, A. M. & Lovejoy, C. Pyrosequencing analysis of the protist communities in a High Arctic meromictic lake: DNA preservation and change. Front. Microbiol. 3, 415 (2012).
Google Scholar
Lepère, C., Domaizon, I., Hugoni, M., Vellet, A. & Debroas, D. Diversity and dynamics of active small microbial eukaryotes in the anoxic zone of a Freshwater Meromictic Lake (Pavin, France). Front. Microbiol. 7 (2016).
Boenigk, J. et al. Geographic distance and mountain ranges structure freshwater protist communities on a European scale. Metabarcoding Metagenom. 2 (2018).
Kammerlander, B. et al. High diversity of protistan plankton communities in remote high mountain lakes in the European Alps and the Himalayan mountains. FEMS Microbiol. Ecol. 91 (2015).
Filker, S., Sommaruga, R., Vila, I. & Stoeck, T. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns. Mol. Ecol. 25, 2286–2301 (2016).
Google Scholar
Stoeck, T. et al. A morphogenetic survey on ciliate plankton from a mountain lake pinpoints the necessity of lineage-specific barcode markers in microbial ecology. Environ. Microbiol. 16, 430–444 (2014).
Google Scholar
de Daniel, A. C., Pedrós-Alió, C., Pearce, D. A. & Alcamí, A. Composition and Interactions among Bacterial, Microeukaryotic, and T4-like Viral Assemblages in Lakes from Both Polar Zones. Front. Microbiol. 7, 337 (2016).
Google Scholar
Stoof-Leichsenring, K. R., Dulias, K., Biskaborn, B. K., Pestryakova, L. A. & Herzschuh, U. Lake-depth related pattern of genetic and morphological diatom diversity in boreal Lake Bolshoe Toko Eastern Siberia. PLoS ONE 15, e0230284 (2020).
Google Scholar
Lefranc, M., Thénot, A., Lepère, C. & Debroas, D. Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl. Environ. Microbiol. 71, 5935–5942 (2005).
Google Scholar
Lepère, C. et al. Geographic distance and ecosystem size determine the distribution of smallest protists in lacustrine ecosystems. FEMS Microbiol. Ecol. 85, 85–94 (2013).
Google Scholar
Vega, J. C., De Hoyos, C., Aldasoro, J. & Miguel, J. Nuevos datos morfométricos para el Lago de Sanabria. Limnetica ISSN 0213-8409 Vol 24 No 1-2 2005 Ejemplar Dedic. XI Congr. Asoc. Esp. Limnol. III Congr. Ibérico Limnol. Pags 115–121 24 (2005).
Margalef, R. Los organismos indicadores en la limnología. (1955).
De Hoyos, C. & Comín, F. The importance of inter-annual variability for management. Hydrobiologia 395–396, 281–291 (1999).
Google Scholar
Negro, A. I., De Hoyos, C. & Aldasoro, J. J. Diatom and desmid relationships with the environment in mountain lakes and mires of NW Spain. Hydrobiologia 505, 1–13 (2003).
Google Scholar
Luque, J. A. Lake sediment response to land-use and climate change during the last 1000 years in the oligotrophic Lake Sanabria (northwest of Iberian Peninsula). Sediment. Geol. 148, 343–355 (2002).
Google Scholar
Jambrina-Enríquez, M. et al. Timing of deglaciation and postglacial environmental dynamics in NW Iberia: the Sanabria Lake record. Q. Sci. Rev. 94, 136–158 (2014).
Google Scholar
Pahissa, J., Fernández-Enríquez, C. & De Hoyos, C. Water quality of Lake Sanabria according to phytoplankton. A comparison with historical data. Limnetica 10, 527–540. https://doi.org/10.23818/limn.34.39 (2015).
Google Scholar
Llorente, A. & Seoane, S. Changes in the phytoplankton community structure in a monomictic temperate lake. Limnetica 39, 469–485 (2020).
Google Scholar
Vega, J. C. The Sanabria lake. The largest natural freshwater lake in Spain. Limnetica 8, 49–57 (1992).
Google Scholar
Edmondson, W. T. Margalef, R. 1983. Limnología. Ediciones Omega, S.A., Barcelona. 1010 p. Limnol. Oceanogr. 29, 1349–1349 (1984).
Hoyos Alonso, C. de. Limnologia del lago de sanabria: variabilidad interanual del fitoplancton. (Universidad de Salamanca, 1997).
Rodríguez-Rodríguez, L., Monserrat, J.-S., M.J., D.-C., Rico, M. & Valero-Garcés, B. Last deglaciation in northwestern Spain: New chronological and geomorphologic evidence from the Sanabria Region. Geomorphology 135, 48–65 (2011).
Oterino, A. G. Lago de sanabria, presente y futuro de un ecosistema en desequilibrio (Antonio Guillén Oterino, 2015).
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597-604 (2013).
Google Scholar
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
Google Scholar
Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 7854 (2017).
Google Scholar
Xie, Y. et al. Environmental DNA metabarcoding reveals primary chemical contaminants in freshwater sediments from different land-use types. Chemosphere 172, 201–209 (2017).
Google Scholar
Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2009). https://doi.org/10.1007/978-0-387-98141-3.
Google Scholar
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Google Scholar
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
Google Scholar
Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538 (2010).
Google Scholar
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
Google Scholar
Berger, S. A. & Stamatakis, A. Aligning short reads to reference alignments and trees. Bioinformatics 27, 2068–2075 (2011).
Google Scholar
Letunic, I. & Bork, P. Interactive Tree Of Life v2: Online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 39, W475-478 (2011).
Google Scholar
Çako, V., Baci, S. & Shena, M. Water turbidity as one of the trophic state indices in Butrinti Lake. J. Water Resour. Prot. 05, 1144–1148 (2013).
Google Scholar
Chanudet, V. & Filella, M. Submicron organic matter in a peri-alpine, ultra-oligotrophic lake. Org. Geochem. 38, 2545 (2007).
Google Scholar
Poikane, S. et al. Defining ecologically relevant water quality targets for lakes in Europe. J. Appl. Ecol. 51, 592–602 (2014).
Google Scholar
Ministerio de Agricultura, Alimentación y Medio Ambiente. Real Decreto 817/2015, de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental. vol. BOE-A-2015-9806 80582-80677 (2015).
Dunthorn, M., Klier, J., Bunge, J. & Stoeck, T. Comparing the hyper-variable V4 and V9 regions of the small subunit rDNA for assessment of ciliate environmental diversity. J. Eukaryot. Microbiol. https://doi.org/10.1111/j.1550-7408.2011.00602.x (2012).
Google Scholar
Williams, P. et al. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 115, 329–341 (2004).
Google Scholar
Eckert, E. M. et al. Different substrates within a lake harbour connected but specialised microbial communities. Hydrobiologia 847, 1689–1704 (2020).
Google Scholar
Piredda, R. et al. Diatom diversity through HTS-metabarcoding in coastal European seas. Sci. Rep. 8, 18059 (2018).
Google Scholar
Adl, S. M. et al. The revised classification of eukaryotes. J. Eukaryot. Microbiol. 59, 429–514 (2012).
Google Scholar
Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119 (2019).
Google Scholar
Nicholls, K. H. & Wujek, D. E. 12—Chrysophycean algae. in Freshwater Algae of North America (eds. Wehr, J. D. & Sheath, R. G.) 471–509 (Academic Press, 2003). https://doi.org/10.1016/B978-012741550-5/50013-1.
Cavalier-Smith, T., Chao, E. E. & Lewis, R. Multiple origins of Heliozoa from flagellate ancestors: New cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista. Mol. Phylogenet. Evol. 93, 331–362 (2015).
Google Scholar
Okamoto, N. & Inouye, I. The Katablepharids are a distant sister group of the cryptophyta: A proposal for Katablepharidophyta Divisio nova/kathablepharida phylum novum based on SSU rDNA and beta-tubulin phylogeny. Protist 156, 163–179 (2005).
Google Scholar
Bråte, J. et al. Freshwater Perkinsea and marine-freshwater colonizations revealed by pyrosequencing and phylogeny of environmental rDNA. ISME J. 4, 1144–1153 (2010).
Google Scholar
Frenken, T. et al. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environ. Microbiol. 19, 3802–3822 (2017).
Google Scholar
Lefèvre, E. et al. Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environ. Microbiol. 9, 61–71 (2007).
Google Scholar
Sime-Ngando, T., Lefevre, E. & Gleason, F. Hidden diversity among aquatic heterotrophic flagellates: Ecological potentials of zoosporic fungi. Hydrobiologia 659 (2011).
Powell, M. J. Looking at mycology with a Janus face: A glimpse at chytridiomycetes active in the environment. Mycologia 85, 1–20 (1993).
Google Scholar
Shearer, C. A. et al. Fungal biodiversity in aquatic habitats. Biodivers. Conserv. 16, 49–67 (2007).
Google Scholar
Jobard, M., Rasconi, S. & Sime-Ngando, T. Diversity and functions of microscopic fungi: A missing component in pelagic food webs. Aquat. Sci. 72 (2010).
Rasconi, S., Jobard, M. & Sime-Ngando, T. Parasitic fungi of phytoplankton: ecological roles and implications for microbial food webs. Aquat. Microb. Ecol. 62, 123–137 (2011).
Google Scholar
Monchy, S. et al. Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environ. Microbiol. 13, 1433–1453 (2011).
Google Scholar
Norén, F., Moestrup, Ø. & Rehnstam-Holm, A.-S. Parvilucifera infectans norén et moestrup gen. et sp. nov. (perkinsozoa phylum nov.): a parasitic flagellate capable of killing toxic microalgae. Eur. J. Protistol. 35, 233–254 (1999).
Erard-Le Denn, E., Chrétiennot-Dinet, M.-J. & Probert, I. First report of parasitism on the toxic dinoflagellate Alexandrium minutum Halim. Estuar. Coast. Shelf Sci. 50, 109–113 (2000).
Google Scholar
Villalba, A., Reece, K. S., Ordás, M. C., Casas, S. M. & Figueras Huerta, A. Perkinsosis in molluscs: A review. https://doi.org/10.1051/alr:2004050 (2004).
Google Scholar
Figueroa, R. I., Garcés, E., Massana, R. & Camp, J. Description, Host-specificity, and Strain Selectivity of the Dinoflagellate Parasite Parvilucifera sinerae sp.nov. (Perkinsozoa). (2008) https://doi.org/10.1016/j.protis.2008.05.003.
Leander, B. S. & Hoppenrath, M. Ultrastructure of a novel tube-forming, intracellular parasite of dinoflagellates: Parvilucifera prorocentri sp. nov. (Alveolata, Myzozoa). Eur. J. Protistol. 44, 55–70 (2008).
Richards, T. A., Vepritskiy, A. A., Gouliamova, D. E. & Nierzwicki-Bauer, S. A. The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environ. Microbiol. 7, 1413–1425 (2005).
Google Scholar
Lefèvre, E., Roussel, B., Amblard, C. & Sime-Ngando, T. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS ONE 3, e2324 (2008).
Google Scholar
Lepère, C., Domaizon, I. & Debroas, D. Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. Appl. Environ. Microbiol. 74, 2940–2949 (2008).
Google Scholar
del Campo, J. et al. Validation of a universal set of primers to study animal-associated microeukaryotic communities. Environ. Microbiol. 21, 3855–3861 (2019).
Google Scholar
Cooper, J. A., Pillinger, J. M. & Ridge, I. Barley straw inhibits growth of some aquatic saprolegniaceous fungi. Aquaculture 156, 157–163 (1997).
Google Scholar
van West, P. Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: new challenges for an old problem. Mycologist 20, 99–104 (2006).
Google Scholar
Phillips, A. J., Anderson, V. L., Robertson, E. J., Secombes, C. J. & van West, P. New insights into animal pathogenic oomycetes. Trends Microbiol. 16, 13–19 (2008).
Google Scholar
del Campo, J. & Ruiz-Trillo, I. Environmental survey meta-analysis reveals hidden diversity among unicellular opisthokonts. Mol. Biol. Evol. 30, 802–805 (2013).
Google Scholar
Lu, Y. et al. Revisiting the phylogenetic position of Caullerya mesnili (Ichthyosporea), a common Daphnia parasite, based on 22 protein-coding genes. Mol. Phylogenet. Evol. 151, 106891 (2020).
Google Scholar
Simon, M. et al. Marked seasonality and high spatial variability of protist communities in shallow freshwater systems. ISME J. 9, 1941–1953 (2015).
Google Scholar
Richards, T. A. & Bass, D. Molecular screening of free-living microbial eukaryotes: diversity and distribution using a meta-analysis. Curr. Opin. Microbiol. 8, 240–252 (2005).
Google Scholar
Annenkova, N. V., Giner, C. R. & Logares, R. Tracing the origin of planktonic protists in an ancient lake. Microorganisms 8, 543 (2020).
Google Scholar
Yi, Z. et al. High-throughput sequencing of microbial eukaryotes in Lake Baikal reveals ecologically differentiated communities and novel evolutionary radiations. FEMS Microbiol. Ecol. 93, 78458 (2017).
Google Scholar
Mukherjee, I. et al. Widespread dominance of kinetoplastids and unexpected presence of diplonemids in deep freshwater lakes. Front. Microbiol. 10 (2019).
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
Google Scholar
López-García, P., Philippe, H., Gail, F. & Moreira, D. Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc. Natl. Acad. Sci. USA 100, 697–702 (2003).
Google Scholar
Not, F. et al. Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes. Deep Sea Res. Part Oceanogr. Res. Pap. 55, 1456–1473 (2008).
Takishita, K., Yubuki, N., Kakizoe, N., Inagaki, Y. & Maruyama, T. Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extrem. Life Extreme Cond. 11, 563–576 (2007).
Google Scholar
Orsi, W., Song, Y. C., Hallam, S. & Edgcomb, V. Effect of oxygen minimum zone formation on communities of marine protists. ISME J. 6, 1586–1601 (2012).
Google Scholar
Lesaulnier, C. et al. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ. Microbiol. 10, 926–941 (2008).
Google Scholar
Torruella, G., Moreira, D. & López-García, P. Phylogenetic and ecological diversity of apusomonads, a lineage of deep-branching eukaryotes. Environ. Microbiol. Rep. 9, 113–119 (2017).
Google Scholar
Bass, D. et al. Rhizarian ‘novel clade 10’ revealed as abundant and diverse planktonic and terrestrial flagellates, including aquavolon n. gen. J. Eukaryot. Microbiol. 65, 828–842 (2018).
Google Scholar
Source: Ecology - nature.com