in

An Early Triassic sauropterygian and associated fauna from South China provide insights into Triassic ecosystem health

  • 1.

    Benton, M. J. Diversification and extinction in the history of life. Science 268, 52–55 (1995).

  • 2.

    Alroy, J. Dynamics of origination and extinction in the marine fossil record. Proc. Natl Acad. Sci. USA 105, 11536–11542 (2008).

  • 3.

    Chen, Z. & Benton, M. J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci. 5, 375–383 (2012).

  • 4.

    Brayard, A. et al. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325, 1118–1121 (2009).

  • 5.

    Stanley, S. Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions. Proc. Natl Acad. Sci. USA 106, 15264–15267 (2009).

  • 6.

    Scheyer, T., Romano, C., Jenks, J. & Bucher, H. Early Triassic marine biotic recovery: the predators’ perspective. PLoS ONE 9, e88987 (2014).

  • 7.

    Romano, C., Koot, M., Kogan, I., Brayard, A. & Kriwet, J. Permian-Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution. Biol. Rev. 91, 106–147 (2016).

  • 8.

    Song, H., Wignall, P. & Dunhill, A. Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction. Sci. Adv. 4, eaat5091 (2018).

  • 9.

    Fröbisch, N., Fröbisch, J., Sander, P. M., Schmitz, L. & Rieppel, O. Macropredatory ichthyosaur from the Middle Triassic and the origin of modern trophic networks. Proc. Natl Acad. Sci. USA 110, 1393–1397 (2013).

  • 10.

    Kelley, N. & Pyenson, N. Evolutionary innovation and ecology in marine tetrapods from the Triassic to the Anthropocene. Science 348, aaa3716 (2015).

  • 11.

    Liu, J. et al. A gigantic nothosaur (Reptilia: Sauropterygia) from the Middle Triassic of SW China and its implication for the Triassic biotic recovery. Sci. Rep. 4, 7142 (2014).

  • 12.

    Benson, R., Butler, R., Lindgren, J. & Smith, A. Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates. Proc. R. Soc. B. 277, 829–834 (2010).

  • 13.

    Motani, R. The evolution of marine reptiles. Evol. Edu. Qutreach. 2, 224–235 (2009).

    • Article
    • Google Scholar
  • 14.

    Rieppel, O. & Sauropterygia I. in Encyclopedia of Paleoherpetology, Volume 12A, (ed. Wellnhofer, P.) 1–134 (Verlag Dr. Friedrich Pfeil, Munich, 2000).

  • 15.

    Cheng, Y. N., Wu, X. C., Sato, T. & Shan, H. A new eosauropterygian (Diapsida, Sauropterygia) from the Triassic of China. J. Vertebr. Paleontol. 32, 1335–1349 (2012).

    • Article
    • Google Scholar
  • 16.

    Jiang, D. et al. The Early Triassic eosauropterygian Majiashanosaurus discocoracoidis, gen. et sp. nov. (Reptilia, Sauropterygia), from Chaohu, Anhui Province, People’s Republic of China. J. Vertebr. Paleontol. 34, 1044–1052 (2014).

    • Article
    • Google Scholar
  • 17.

    Rieppel, O. The systematic status of Hanosaurus hupehensis (Reptilia, Sauropterygia) from the Triassic of China. J. Vertebr. Paleontol. 18, 545–557 (1998).

    • Article
    • Google Scholar
  • 18.

    Rieppel, O. Corosaurus alcovensis case, and the phylogenetic interrelationships of Triassic stem-group Sauropterygia. Zool. J. Linn. Soc. -Lond. 124, 1–41 (1998).

    • Article
    • Google Scholar
  • 19.

    Liu, J. et al. A new pachypleurosaur (Reptilia, Sauropterygia) from the lower Middle Triassic of SW China and the phylogenetic relationships of Chinese pachypleurosaurs. J. Vertebr. Paleontol. 31, 292–302 (2011).

    • Article
    • Google Scholar
  • 20.

    Neenan, J., Klein, N. & Scheyer, T. European origin of placodont marine reptiles and the evolution of crushing dentition in Placodontia. Nat. Commun. 4, 1621 (2013).

  • 21.

    Sato, T., Zhao, L., Wu, X. C. & Li, C. Diandongosaurus acutidentatus Shang, Wu & Li, 2011 (Diapsida: Sauropterygia) and the relationships of Chinese eosauropterygians. Geo. Mag. 151, 121–133 (2014).

    • Article
    • Google Scholar
  • 22.

    Jiang, D., Lin, W., Rieppel, O., Motani, R. & Sun, Z. A new Anisian (Middle Triassic) eosauropterygian (Reptilia, Sauropterygia) from Panzhou, Guizhou Province, China. J. Vertebr. Paleontol. 38, 1480113 (2019).

    • Google Scholar
  • 23.

    de Miguel Chaves, C., Ortega, F. & Pérez-García, A. New highly pachyostotic nothosauroid interpreted as a filter-feeding Triassic marine reptile. Biol. Lett. 14, 20180130 (2018).

  • 24.

    Chen, X., Cheng, L., Wang, C. & Zhang, B. Triassic Marine Reptile Faunas from Middle and Upper Yangtze Areas and Their Co-evolution with Environment. (Geological Publishing House, 2016).

  • 25.

    Cheng, L. et al. Early Triassic marine reptile representing the oldest record of unusually small eyes in reptiles indicating non-visual prey detection. Sci. Rep. 9, 152 (2019).

  • 26.

    Young, C. C. On the new nothosaurs from Hupeh and Kweichou, China. Vertebr. Palasiat. 9, 315–356 (1965).

    • Google Scholar
  • 27.

    Cheng, L. The Succession of Marine Reptiles from the Middle to Upper Triassic of Guizhou and Yunnan Provinces, Southwest China PhD thesis, China University of Geosciences, 1–111 (2015).

  • 28.

    Sander, P. M. The pachypleurosaurids (Reptilia: Nothosauria) from the Middle Triassic of Monte San Giorgio (Switzerland) with the description of a new species. Philos. Trans. R. Soc. Lond. B Biol. Sci. 325, 561–666 (1989).

  • 29.

    Young, C. C. A marine lizard from Nanchang, Hupeh Province. Memoirs of the Institute of Vertebrate Paleontology and Paleoanthropology. Acad. Sin. 9, 17–28 (1972).

    • Google Scholar
  • 30.

    Shang, Q., Wu, X. C. & Li, C. A new eosauropterygian from Middle Triassic of eastern Yunnan Province, southwestern China. Vertebr. Palasiat. 49, 155–171 (2011).

    • Google Scholar
  • 31.

    Dalla Vecchia, F. A new sauropterygian reptile with plesiosaurian affinity from the Late Triassic of Italy. Riv. Ital. Paleontol. S. 112, 207–225 (2006).

    • Google Scholar
  • 32.

    Renesto, S., Binelli, G. & Hagdorn, H. A new pachypleurosaur from the Middle Triassic Besano Formation of Northern Italy. Neues Jb. Geol. Palaeontol. Abh. 271, 151–168 (2014).

    • Article
    • Google Scholar
  • 33.

    Shang, Q. & Li, C. A new small-sized eosauropterygian (Diapsida: Sauropterygia) from the Middle Triassic of Luoping, Yunnan, southwestern China. Vertebr. Palasiat. 53, 265–280 (2015).

    • Google Scholar
  • 34.

    Cheng, Y. N., Wu, X. C., Tamaki, S. & Shan, H. Dawazisaurus brevis, a new eosauropterygian from the Middle Triassic of Yunnan, China. Acta Geol. Sin. – Engl. Ed. 90, 401–424 (2016).

    • Article
    • Google Scholar
  • 35.

    Ma, L., Jiang, D., Rieppel, O., Motani, R. & Tintori, A. A new pistosauroid (Reptilia, Sauropterygia) from the late Ladinian Xingyi marine reptile level, southwestern China. J. Vertebr. Paleontol. 35, e881832 (2015).

    • Article
    • Google Scholar
  • 36.

    Wu, X. C., Cheng, Y. N., Li, C., Zhao, L. & Sato, T. New information on Wumengosaurus delicatomandibularis Jiang et al. 2008 (Diapsida: Sauropterygia), with a revision of the osteology and phylogeny of the taxon. J. Vertebr. Paleontol. 31, 70–83 (2011).

    • Google Scholar
  • 37.

    Rieppel, O., Sander, P. M. & Storrs, G. The skull of the pistosaur Augustasaurus from the Middle Triassic of northwestern Nevada. J. Vertebr. Paleontol. 22, 577–593 (2002).

    • Article
    • Google Scholar
  • 38.

    Holmes, R., Cheng, Y. N. & Wu, X. C. New information on the skull of Keichousaurus hui (Reptilia: Sauropterygia) with comments on sauropterygian interrelationships. J. Vertebr. Paleontol. 28, 76–84 (2008).

    • Article
    • Google Scholar
  • 39.

    Lin, W. et al. A new specimen of Lariosaurus xingyiensis (Reptilia, Sauropterygia) from the Ladinian (Middle Triassic) Zhuganpo Member, Falang Formation, Guizhou, China. J. Vertebr. Paleontol. e1278703; https://doi.org/10.1080/02724634.2017.1278703 (2017).

    • Article
    • Google Scholar
  • 40.

    Wang, K. Ueber eine neue fossile Reptilform von Provinz Hupeh,China. Acta Palaeontol. Sin. 7, 373–378 (1959).

    • Google Scholar
  • 41.

    Benton, M. J. et al. Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction. Earth-Sci. Rev. 125, 199–243 (2013).

    • Article
    • Google Scholar
  • 42.

    Chen, X., Sander, P. M., Cheng, L. & Wang, X. A new Triassic primitive ichthyosaur from Yuanan, South China. Acta Geol. Sin. 87, 672–677 (2013).

    • Google Scholar
  • 43.

    Young, C. C. & Dong, Z. Hupehsuchus nanchangensis in Aquatic Reptiles from the Triassic of China (eds Young, C. C. & Dong, Z.) 28–34 (Academia Sinica, 1972).

  • 44.

    Chen, X., Motani, R., Cheng, L., Jiang, D. & Rieppel, O. The enigmatic marine reptile Nanchangosaurus from the Lower Triassic of Hubei, China and the phylogenetic affinities of Hupehsuchia. PLoS ONE 9, e102361 (2014).

  • 45.

    Chen, X., Motani, R., Cheng, L., Jiang, D. & Rieppel, O. A small short-necked hupehsuchian from the Lower Triassic of Hubei Province, China. PLoS ONE 9, e115244 (2014).

  • 46.

    Chen, X., Motani, R., Cheng, L., Jiang, D. & Rieppel, O. A new specimen of Carroll’s mystery hupehsuchian from the Lower Triassic of China. PLoS ONE 10, e0126024 (2015).

  • 47.

    Motani, R. et al. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds. Sci. Rep. 5, 8900 (2015).

  • 48.

    Werth, A. Feeding in marine mammals in Feeding (ed Schwenk, K.) 487–526 (San Diego, Academic Press, 2000).

  • 49.

    Chen, X., Motani, R., Cheng, L., Jiang, D. & Rieppel, O. A carapace-like bony ‘body tube’ in an Early Triassic marine reptile and the onset of marine tetrapod predation. PLoS ONE 9, e94396 (2014).

  • 50.

    Tschanz, K. Lariosaurus buzzii n. sp. from the Middle Triassic of Monte San Giorgio (Switzerland) with comments on the classification of nothosaurs. Palaeontogr. Abt. A. 208, 153–179 (1989).

    • Google Scholar
  • 51.

    Rieppel, O. Feeding mechanics in Triassic stem-group sauropterygians: the anatomy of a successful invasion of Mesozoic seas. Zool. J. Linn. Soc. Lond. 135, 33–63 (2002).

    • Article
    • Google Scholar
  • 52.

    Hu, S. et al. The Luoping biota: exceptional preservation, and new evidence on the Triassic recovery from end-Permian mass extinction. Proc. R. Soc. B 278, 2274–2282 (2011).

  • 53.

    Swofford, D. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4 (Sinauer Associates, Sunderland, Massachusetts, 2002).

  • 54.

    Pol, D. & Norell, M. Comments on the Manhattan stratigraphic measure. Cladistics 17, 285–289 (2001).

    • Article
    • Google Scholar
  • 55.

    Wills, M. Congruence between phylogeny and stratigraphy: randomization tests and the gap excess ratio. Syst. Biol. 48, 559–580 (1999).

    • Article
    • Google Scholar
  • 56.

    Bell, M. & Lloyd, G. Strap: stratigraphic tree analysis for palaeontology R package version 1.4, https://CRAN.R-project.org/package=strap (2014).

  • 57.

    Bell, M. & Lloyd, G. Strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontology 58, 379–389 (2015).

    • Article
    • Google Scholar
  • 58.

    Pol, D. & Norell, M. Uncertainty in the age of fossils and the stratigraphic fit to phylogenies. Syst. Biol. 55, 512–521 (2006).

  • 59.

    Chen, C., Chen, X., Cheng, L. & Yan, C. Nanzhang-Yuanan Fauna, Hubei Province and its significance for biotic recovery. Acta Geol. Sin. 90, 409–420 (2016).

    • Google Scholar

  • Source: Ecology - nature.com

    Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater

    Six months on, how is Victoria’s e-waste ban faring?