in

Phosphorus-limited conditions in the early Neoproterozoic ocean maintained low levels of atmospheric oxygen

  • 1.

    Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).

    • Article
    • Google Scholar
  • 2.

    Planavsky, N. J. et al. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638 (2014).

    • Article
    • Google Scholar
  • 3.

    Kump, L. R. The rise of atmospheric oxygen. Nature 451, 277–278 (2008).

    • Article
    • Google Scholar
  • 4.

    Zhang, S. et al. Sufficient oxygen for animal respiration 1,400 million years ago. Proc. Natl Acad. Sci. USA 113, 1731–1736 (2016).

    • Article
    • Google Scholar
  • 5.

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    • Article
    • Google Scholar
  • 6.

    Reinhard, C. T., Planavsky, N. J., Olson, S. L., Lyons, T. W. & Erwin, D. H. Earth’s oxygen cycle and the evolution of animal life. Proc. Natl Acad. Sci. USA 113, 8933–8938 (2016).

    • Article
    • Google Scholar
  • 7.

    Zhang, K. et al. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes. Nat. Geosci. 11, 345–350 (2018).

    • Article
    • Google Scholar
  • 8.

    Guilbaud, R., Poulton, S. W., Butterfield, N. J., Zhu, M. & Shields-Zhou, G. A. A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nat. Geosci. 8, 466–470 (2015).

    • Article
    • Google Scholar
  • 9.

    Sperling, E. A. et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523, 451–454 (2015).

    • Article
    • Google Scholar
  • 10.

    Bjerrum, C. J. & Canfield, D. E. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417, 159 (2002).

    • Article
    • Google Scholar
  • 11.

    Planavsky, N. J. et al. The evolution of the marine phosphate reservoir. Nature 467, 1088–1090 (2010).

    • Article
    • Google Scholar
  • 12.

    Reinhard, C. T. et al. Evolution of the global phosphorus cycle. Nature 541, 386–389 (2017).

    • Article
    • Google Scholar
  • 13.

    Jones, C., Nomosatryo, S., Crowe, S. A., Bjerrum, C. J. & Canfield, D. E. Iron oxides, divalent cations, silica, and the early Earth phosphorus crisis. Geology 43, 135–138 (2015).

    • Article
    • Google Scholar
  • 14.

    Konhauser, K. O., Lalonde, S. V., Amskold, L. & Holland, H. D. Was there really an Archean phosphate crisis? Science 315, 1234–1234 (2007).

    • Article
    • Google Scholar
  • 15.

    Poulton, S. W. Biogeochemistry: early phosphorus redigested. Nat. Geosci. 10, 75–76 (2017).

    • Article
    • Google Scholar
  • 16.

    Rivas-Lamelo, S. et al. Magnetotactic bacteria as a new model for P sequestration in the ferruginous Lake Pavin. Geochem. Perspect. Lett. 5, 35–41 (2017).

    • Article
    • Google Scholar
  • 17.

    Konhauser, K. O. et al. Decoupling photochemical Fe (II) oxidation from shallow-water BIF deposition. EarthPlanet. Sci. Lett. 258, 87–100 (2007).

    • Article
    • Google Scholar
  • 18.

    Zegeye, A. et al. Green rust formation controls nutrient availability in a ferruginous water column. Geology 40, 599–602 (2012).

    • Article
    • Google Scholar
  • 19.

    Cosmidis, J. et al. Biomineralization of iron-phosphates in the water column of Lake Pavin (Massif Central, France). Geochim. Cosmochim. Acta 126, 78–96 (2014).

    • Article
    • Google Scholar
  • 20.

    Froelich, P. N. et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075–1090 (1979).

    • Article
    • Google Scholar
  • 21.

    Ingall, E. & Jahnke, R. Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Mar. Geol. 139, 219–229 (1997).

    • Article
    • Google Scholar
  • 22.

    Krom, M., Kress, N., Brenner, S. & Gordon, L. Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnol. Oceanogr. 36, 424–432 (1991).

    • Article
    • Google Scholar
  • 23.

    Slomp, C. P., Thomson, J. & de Lange, G. J. Controls on phosphorus regeneration and burial during formation of eastern Mediterranean sapropels. Mar. Geol. 203, 141–159 (2004).

    • Article
    • Google Scholar
  • 24.

    Dellwig, O. et al. A new particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins. Geochim. Cosmochim. Acta 74, 7100–7115 (2010).

    • Article
    • Google Scholar
  • 25.

    Thompson, J. et al. Development of a modified SEDEX phosphorus speciation method for ancient rocks and modern iron-rich sediments. Chem. Geol. 524, 383–393 (2019).

    • Article
    • Google Scholar
  • 26.

    Egger, M., Jilbert, T., Behrends, T., Rivard, C. & Slomp, C. P. Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments. Geochim. Cosmochim. Acta 169, 217–235 (2015).

    • Article
    • Google Scholar
  • 27.

    Slomp, C. P. et al. Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane. PLoS ONE 8, e62386 (2013).

    • Article
    • Google Scholar
  • 28.

    Xiong, Y. et al. Phosphorus cycling in Lake Cadagno, Switzerland: a low sulfate euxinic ocean analogue. Geochim. Cosmochim. Acta 251, 116–135 (2019).

    • Article
    • Google Scholar
  • 29.

    Van Cappellen, P. & Ingall, E. D. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9, 677–692 (1994).

    • Article
    • Google Scholar
  • 30.

    Canfield, D. E., Raiswell, R. & Bottrell, S. H. The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci. 292, 659–683 (1992).

    • Article
    • Google Scholar
  • 31.

    Dos Santos Afonso, M. & Stumm, W. Reductive dissolution of iron(III) (hydr)oxides by hydrogen sulfide. Langmuir 8, 1671–1675 (1992).

    • Article
    • Google Scholar
  • 32.

    Ruttenberg, K. C. & Berner, R. A. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochim. Cosmochim. Acta 57, 991–1007 (1993).

    • Article
    • Google Scholar
  • 33.

    Planavsky, N. J. et al. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature 477, 448–451 (2011).

    • Article
    • Google Scholar
  • 34.

    Poulton, S. W., Fralick, P. W. & Canfield, D. E. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat. Geosci. 3, 486–490 (2010).

    • Article
    • Google Scholar
  • 35.

    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

    • Article
    • Google Scholar
  • 36.

    Tang, Q. et al. Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan region of North China and their biostratigraphic significance. Precambrian Res. 236, 157–181 (2013).

    • Article
    • Google Scholar
  • 37.

    März, C. et al. Redox sensitivity of P cycling during marine black shale formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochim. Cosmochim. Acta 72, 3703–3717 (2008).

    • Article
    • Google Scholar
  • 38.

    Turekian, K. K. & Wedepohl, K. H. Distribution of the elements in some major units of the Earth’s crust. Geol. Soc. Am. Bull. 72, 175–192 (1961).

    • Article
    • Google Scholar
  • 39.

    Teng, Y.-C., Primeau, F. W., Moore, J. K., Lomas, M. W. & Martiny, A. C. Global-scale variations of the ratios of carbon to phosphorus in exported marine organic matter. Nat. Geosci. 7, 895–898 (2014).

    • Article
    • Google Scholar
  • 40.

    Ingall, E. D., Bustin, R. & Van Cappellen, P. Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochim. Cosmochim. Acta 57, 303–316 (1993).

    • Article
    • Google Scholar
  • 41.

    Schrag, D. P., Higgins, J. A., Macdonald, F. A. & Johnston, D. T. Authigenic carbonate and the history of the global carbon cycle. Science 339, 540–543 (2013).

    • Article
    • Google Scholar
  • 42.

    Creveling, J. R. et al. Phosphorus sources for phosphatic Cambrian carbonates. Geol. Soc. Am. Bull. 126, 145–163 (2014).

    • Article
    • Google Scholar
  • 43.

    Kipp, M. A. & Stüeken, E. E. Biomass recycling and Earth’s early phosphorus cycle. Sci. Adv. 3, eaao4795 (2017).

    • Article
    • Google Scholar
  • 44.

    Sperling, E. A. & Stockey, R. G. The temporal and environmental context of early animal evolution: considering all the ingredients of an “Explosion”. Integr. Comp. Biol. 58, 605–622 (2018).

    • Article
    • Google Scholar
  • 45.

    Daines, S. J., Mills, B. J. & Lenton, T. M. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nat. Commun. 8, 14379 (2017).

    • Article
    • Google Scholar
  • 46.

    Wedepohl, K. H. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995).

    • Article
    • Google Scholar
  • 47.

    Mackenzie, F., Lerman, A. & Andersson, A. Past and present of sediment and carbon biogeochemical cycling models. Biogeosci. Discuss. 1, 27–85 (2004).

    • Article
    • Google Scholar
  • 48.

    Compton, J. et al. in Marine Authigenesis: From Global to Microbial (ed. Glenn, C. R.) 21–33 (Society for Sedimentary Geology, 2000).

  • 49.

    Stolper, D. A. & Keller, C. B. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature 553, 323–327 (2018).

    • Article
    • Google Scholar
  • 50.

    Lenton, T. M. & Daines, S. J. Biogeochemical transformations in the history of the ocean. Annu. Rev. Mar. Sci. 9, 31–58 (2017).

    • Article
    • Google Scholar
  • 51.

    Ruttenberg, K. C. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr. 37, 1460–1482 (1992).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Machine learning picks out hidden vibrations from earthquake data

    Evolutionary Traits that Enable Scleractinian Corals to Survive Mass Extinction Events