in

Comparative genome-centric analysis reveals seasonal variation in the function of coral reef microbiomes

  • 1.

    De’ath G, Fabricius KE, Sweatman H, Puotinen M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. PNAS USA. 2012;109:17995–9.

    • Google Scholar
  • 2.

    Hoegh-Guldberg O. Coral reefs in the Anthropocene: persistence or the end of the line? Geol Soc Spec Publ. 2014;395:167–83.

    • Google Scholar
  • 3.

    Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, et al. Coral reefs in the Anthropocene. Nature. 2017;546:82–90.

    • Google Scholar
  • 4.

    Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, et al. Climate change, human impacts, and the resilience of coral reefs. Science. 2003;301:929–33.

    • Google Scholar
  • 5.

    Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, et al. Global warming transforms coral reef assemblages. Nature. 2018;556:492–6.

    • Google Scholar
  • 6.

    Bruno JF, Sweatman H, Precht WF, Selig ER, Schutte VG. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology. 2009;90:1478–84.

    • Google Scholar
  • 7.

    Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol. 2007;17:360–5.

    • Google Scholar
  • 8.

    Haas AF, Fairoz MFM, Kelly LW, Nelson CE, Dinsdale EA, Edwards RA, et al. Global microbialization of coral reefs. Nat Microbiol. 2016;1:16042.

    • Google Scholar
  • 9.

    Ainsworth TD, Gates RD. Corals’ microbial sentinels. Science. 2016;352:1518–9.

    • Google Scholar
  • 10.

    Webster NS, Reusch TBH. Microbial contributions to the persistence of coral reefs. Isme J. 2017;11:2167–74.

    • Google Scholar
  • 11.

    Bourne DG, Morrow KM, Webster NS. Coral Holobionts: insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol. 2016;70:317–40.

    • Google Scholar
  • 12.

    McDevitt-Irwin JM, Baum JK, Garren M, Thurber RLV. Responses of coral-associated bacterial communities to local and global stressors. Front Mar Sci. 2017;4:262.

    • Google Scholar
  • 13.

    Morrow KM, Bourne DG, Humphrey C, Botte ES, Laffy P, Zaneveld J, et al. Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. ISME J. 2015;9:894–908.

    • Google Scholar
  • 14.

    Pita L, Rix L, Slaby BM, Franke A, Hentschel U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome. 2018;6:46.

    • Google Scholar
  • 15.

    Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat Commun. 2017;8:14213.

    • Google Scholar
  • 16.

    Bourne D, Iida Y, Uthicke S, Smith-Keune C. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2008;2:350–63.

    • Google Scholar
  • 17.

    Fan L, Liu M, Simister R, Webster NS, Thomas T. Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress. ISME J. 2013;7:991–1002.

    • Google Scholar
  • 18.

    Glasl B, Herndl GJ, Frade PR. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J. 2016;10:2280–92.

    • Google Scholar
  • 19.

    Zaneveld JR, Burkepile DE, Shantz AA, Pritchard CE, McMinds R, Payet JP, et al. Overfishing and nutrient polution interact with temperature to disrupt coral reefs down to microbial scales. Nat Commun. 2016;7:11833.

    • Google Scholar
  • 20.

    De Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, de Goeij AFPM, et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science. 2013;342:108–10.

    • Google Scholar
  • 21.

    McDole T, Nulton J, Barott KL, Felts B, Hand C, Hatay M, et al. Assessing coral reefs on a pacific-wide scale using the microbialization score. PLoS ONE. 2012;7:e43233.

    • Google Scholar
  • 22.

    Haas AF, Nelson CE, Kelly LW, Carlson CA, Rohwer F, Leichter JJ, et al. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS ONE. 2011;6:e27973.

    • Google Scholar
  • 23.

    Morrow KM, Paul VJ, Liles MR, Chadwick NE. Allelochemicals produced by Caribbean macroalgae and cyanobacteria have species-specific effects on reef coral microorganisms. Coral Reefs. 2011;30:309–20.

    • Google Scholar
  • 24.

    Nelson CE, Goldberg SJ, Kelly LW, Haas AF, Smith JE, Rohwer F, et al. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J. 2013;7:962–79.

    • Google Scholar
  • 25.

    Nugues MM, Smith GW, Hooidonk RJ, Seabra MI, Bak RPM. Algal contact as a trigger for coral disease. Ecol Lett. 2004;7:919–23.

    • Google Scholar
  • 26.

    Sweet MJ, Bythell JC, Nugues MM. Algae as reservoirs for coral pathogens. PLoS ONE. 2013;8:e69717.

    • Google Scholar
  • 27.

    Vega Thurber R, Burkepile DE, Correa AM, Thurber AR, Shantz AA, Welsh R, et al. Macroalgae decrease growth and alter microbial community structure of the reef-building coral, Porites astreoides. PLoS ONE. 2012;7:e44246.

    • Google Scholar
  • 28.

    Barott KL, Rohwer FL. Unseen players shape benthic competition on coral reefs. Trends Microbiol. 2012;20:621–8.

    • Google Scholar
  • 29.

    Dinsdale EA, Pantos O, Smriga S, Edwards RA, Angly F, Wegley L, et al. Microbial ecology of four coral atolls in the northern Line Islands. PLoS ONE. 2008;3:e1584.

    • Google Scholar
  • 30.

    Vega Thurber RL, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F, et al. Metagenomic analysis of stressed coral holobionts. Environ Microbiol. 2009;11:2148–63.

    • Google Scholar
  • 31.

    Garren M, Azam F. New directions in coral reef microbial ecology. Environ Microbiol. 2012;14:833–44.

    • Google Scholar
  • 32.

    Glasl B, Webster NS, Bourne DG. Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems. Mar Biol. 2017;164:91.

    • Google Scholar
  • 33.

    Imelfort M, Parks D, Woodcroft BJ, Dennis P, Hugenholtz P, Tyson GW. GroopM: an automated tool for the recovery of population genomes from related metagenomes. PeerJ. 2014;2:e603.

    • Google Scholar
  • 34.

    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165–1165.

    • Google Scholar
  • 35.

    Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.

    • Google Scholar
  • 36.

    Ceccarelli DM, Evans RD, Logan M, Mantel P, Puotinen M, Petus C. et al. Long-term dynamics and drivers of coral and macroalgal cover on inshore reefs of the Great Barrier Reef Marine Park. Ecol Appl. 2019;0:e02008

    • Google Scholar
  • 37.

    De’ath G, Fabricius K. Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecol Appl. 2010;20:840–50.

    • Google Scholar
  • 38.

    Wismer S, Hoey AS, Bellwood DR. Cross-shelf benthic community structure on the Great Barrier Reef: relationships between macroalgal cover and herbivore biomass. Mar Ecol Prog Ser. 2009;376:45–54.

    • Google Scholar
  • 39.

    Ceccarelli DM, Loffler Z, Bourne DG, Al Moajil-Cole GS, Boström-Einarsson L, Evans-Illidge E, et al. Rehabilitation of coral reefs through removal of macroalgae: state of knowledge and considerations for management and implementation. Restor Ecol. 2018;26:827–38.

    • Google Scholar
  • 40.

    Schaffelke B, Klumpp DW. Biomass and productivity of tropical macroalgae on three nearshore fringing reefs in the central Great Barrier Reef, Australia. Bot Mar. 1997;40:373–83.

    • Google Scholar
  • 41.

    Mellin C, Matthews S, Anthony KRN, Brown SC, Caley MJ, Johns KA, et al. Spatial resilience of the Great Barrier Reef under cumulative disturbance impacts. Glob Change Biol. 2019;25:2431–45.

    • Google Scholar
  • 42.

    Walther BD, Kingsford MJ, McCulloch MT. Environmental records from Great Barrier Reef corals: inshore versus offshore drivers. PLoS ONE. 2013;8:e77091.

    • Google Scholar
  • 43.

    Devlin MJ, Lorey MJ. Water quality – field and analyitical procedures. In: Long-term monitoring Great Barrier Reef, editor. Standard Operational Procedues, vol 6. Townsville: Australian Institute of Marine Science; 2000.

  • 44.

    Glasl B, Bourne DG, Frade PR, Thomas T, Schaffelke B, Webster NS. Microbial indicators of environmental perturbations in coral reef ecosystems. Microbiome. 2019a;7:94.

    • Google Scholar
  • 45.

    Botte ES, Nielsen S, Abdul Wahab MA, Webster J, Robbins S, Thomas T, et al. Changes in the metabolic potential of the sponge microbiome under ocean acidification. Nat Commun. 2019;10:4134.

    • Google Scholar
  • 46.

    Sturm M, Schroeder C, Bauer P. SeqPurge: highly-sensitive adapter trimming for paired-end NGS data. BMC Bioinforma. 2016;17:208.

    • Google Scholar
  • 47.

    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.

    • Google Scholar
  • 48.

    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    • Google Scholar
  • 49.

    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. Isme J. 2017;11:2864–8.

    • Google Scholar
  • 50.

    Krüger K, Chafee M, Ben Francis T, Glavina del Rio T, Becher D, Schweder T, et al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J. 2019;13:2800–16.

  • 51.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2019. https://www.R-project.org/.

  • 52.

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.5-6. 2019. https://CRAN.R-project.org/package=vegan.

  • 53.

    Chen H. VennDiagram: generate high-resolution Venn and Euler plots. R package version 1.6.20. 2018. https://CRAN.Rproject.org/package=VennDiagram.

  • 54.

    Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.

    • Google Scholar
  • 55.

    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.

    • Google Scholar
  • 56.

    Wickham H. ggplot2: Elegant graphics for data analysis. Springer-Verlag, New York, 2016.

  • 57.

    Clark-Carter, D. z Scores. In Wiley StatsRef: Statistics Reference Online (eds Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels JL). 2014. https://doi.org/10.1002/9781118445112.stat06236.

  • 58.

    Webster NS, Thomas T. The sponge hologenome. mBio. 2016;7:e00135–16.

    • Google Scholar
  • 59.

    Grondin JM, Tamura K, Déjean G, Abbott DW, Brumer H. Polysaccharide utilization loci: fueling microbial communities. J Bacteriol. 2017;199:e00860–00816.

    • Google Scholar
  • 60.

    Viborg AH, Terrapon N, Lombard V, Michel G, Czjzek M, Henrissat B, et al. A subfamily roadmap for functional glycogenomics of the evolutionarily diverse glycoside hydrolase family 16 (GH16). J Biol Chem. 2019. https://doi.org/10.1074/jbc.RA119.010619.

  • 61.

    Becker S, Scheffel A, Polz MF, Hehemann JH. Accurate quantification of laminarin in marine organic matter with enzymes from marine microbes. Appl Environ Microbiol. 2017;83:e03389–16.

    • Google Scholar
  • 62.

    Rioux LE, Turgeon SL, Beaulieu M. Characterization of polysaccharides extracted from brown seaweeds. Carbohydr Polym. 2007;69:530–7.

    • Google Scholar
  • 63.

    Mühlenbruch M, Grossart H-P, Eigemann F, Voss M. Mini-review: phytoplankton-derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ Microbiol. 2018;20:2671–85.

    • Google Scholar
  • 64.

    Lerouge I, Vanderleyden J. O‐antigen structural variation: mechanisms and possible roles in animal/plant–microbe interactions. FEMS Microbiol Rev. 2006;26:17–47.

    • Google Scholar
  • 65.

    Wang X, Quinn PJ, Yan A. Kdo2-lipid A: structural diversity and impact on immunopharmacology. Biol Rev. 2015;90:408–27.

    • Google Scholar
  • 66.

    Kovacs-Simon A, Titball RW, Michell SL. Lipoproteins of bacterial pathogens. Infect Immun. 2011;79:548–61.

    • Google Scholar
  • 67.

    Dowhan W, Bogdanov M. Functional roles of lipids in membranes. In: Vance DE, Vance JE, editors. Biochemistry of lipids, lipoproteins and membranes. Amsterdam, The Netherlands: Elsevier Science; 2002.

    • Google Scholar
  • 68.

    Angly FE, Heath C, Morgan TC, Tonin H, Rich V, Schaffelke B, et al. Marine microbial communities of the Great Barrier Reef lagoon are influenced by riverine floodwaters and seasonal weather events. PeerJ. 2016;4:e1511.

    • Google Scholar
  • 69.

    Kelly LW, Williams GJ, Barott KL, Carlson CA, Dinsdale EA, Edwards RA, et al. Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. PNAS. 2014;111:10227–32.

    • Google Scholar
  • 70.

    Lefèvre CD, Bellwood DR. Seasonality and dynamics in coral reef macroalgae: variation in condition and susceptibility to herbivory. Mar Biol. 2010;157:955–65.

    • Google Scholar
  • 71.

    Zubia M, Payri C, Deslandes E. Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French Polynesia). J Appl Phycol. 2008;20:1033–43.

    • Google Scholar
  • 72.

    Saier MHJ. The bacterial phosphotransferase system: new frontiers 50 years after its discovery. J Mol Microbiol Biotechnol. 2015;25:73–78.

    • Google Scholar
  • 73.

    Nakanishi K, Nishijima M, Nishimura M, Kuwano K, Saga N. Bacteria that induce morphogenesis in Ulva pertusa (Chlorophyta) grown under axenic conditions. J Phycol. 1996;32:479–82.

    • Google Scholar
  • 74.

    Singh RP, Mantri VA, Reddy CRK, Jha B. Isolation of seaweed-associated bacteria and their morphogenesis-inducing capability in axenic cultures of the green alga Ulva fasciata. Aquat Biol. 2011;12:13–21.

    • Google Scholar
  • 75.

    Singh RP, Reddy CRK. Unraveling the functions of the macroalgal microbiome. Front Microbiol. 2016;6:1488.

    • Google Scholar
  • 76.

    Glasl B, Smith CE, Bourne DG, Webster NS. Disentangling the effect of host-genotype and environment on the microbiome of the coral Acropora tenuis. PeerJ. 2019b;7:e6377.

    • Google Scholar
  • 77.

    Diaz MC, Rützler K. Sponges: an essential component of Caribbean coral reefs. Bull Mar Sci. 2001;69:535–46.

    • Google Scholar
  • 78.

    Webster NS, Taylor MW. Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol. 2012;14:335–46.

    • Google Scholar
  • 79.

    Moitinho-Silva L, Steinert G, Nielsen S, Hardoim CCP, Wu YC, McCormack GP, et al. Predicting the HMA-LMA status in marine sponges by machine learning. Front Microbiol. 2017;8:752.

    • Google Scholar
  • 80.

    Burgsdorf I, Slaby BM, Handley KM, Haber M, Blom J, Marshall CW, et al. Lifestyle evolution in cyanobacterial symbionts of sponges. mBio. 2015;6:e00391–00315.

    • Google Scholar

  • Source: Ecology - nature.com

    Machine learning picks out hidden vibrations from earthquake data

    Evolutionary Traits that Enable Scleractinian Corals to Survive Mass Extinction Events