in

No state change in pelagic fish production and biodiversity during the Eocene–Oligocene transition

  • 1.

    Liu, Z. et al. Global cooling during the Eocene-Oligocene climate transition. Science 323, 1187–1190 (2009).

    • Google Scholar
  • 2.

    Diester-Haass, L. & Zahn, R. Paleoproductivity increase at the Eocene-Oligocene climatic transition; ODP/DSDP sites 763 and 592. Palaeogeogr. Palaeoclimatol. Palaeoecol. 172, 153–170 (2001).

    • Google Scholar
  • 3.

    Wade, B. S. et al. Multiproxy record of abrupt sea-surface cooling across the Eocene-Oligocene transition in the Gulf of Mexico. Geology 40, 159–162 (2012).

    • Google Scholar
  • 4.

    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    • Google Scholar
  • 5.

    Fischer, A. G. & Arthur, M. A. Secular variations in the pelagic realm. Soc. Econ. PA 25, 19–50 (1977).

    • Google Scholar
  • 6.

    Robert, C. & Kennett, J. P. Antarctic continental weathering changes during Eocene-Oligocene cryosphere expansion: clay mineral and oxygen isotope evidence. Geology 25, 587–590 (1997).

    • Google Scholar
  • 7.

    Berger, W. H. Cenozoic cooling, Antarctic nutrient pump, and the evolution of whales. Deep-Sea Res. Pt II 54, 2399–2421 (2007).

    • Google Scholar
  • 8.

    Coxall, H. K. & Wilson, P. A. Early Oligocene glaciation and productivity in the eastern equatorial Pacific: insights into global carbon cycling. Paleoceanography 26, PA2221 (2011).

    • Google Scholar
  • 9.

    Egan, K. E., Rickaby, R. E. M., Hendry, K. R. & Halliday, A. N. Opening the gateways for diatoms primes Earth for Antarctic glaciation. Earth Planet Sci. Lett. 375, 34–43 (2013).

    • Google Scholar
  • 10.

    Moloney, C. L. & Field, J. G. The size-based dynamics of plankton food webs. I. A simulation model of carbon and nitrogen flows. J. Plankton Res. 13, 1003–1038 (1991).

    • Google Scholar
  • 11.

    Moloney, C. L., Field, J. G. & Lucas, M. I. The size-based dynamics of plankton food webs. II. Simulations of three contrasting southern Benguela food webs. J. Plankton Res. 13, 1039–1092 (1991).

    • Google Scholar
  • 12.

    Pyenson, N. D. & Vermeij, G. J. The rise of ocean giants: maximum body size in Cenozoic marine mammals as an indicator for productivity in the Pacific and Atlantic oceans. Biol. Lett. 12, 20160186 (2016).

    • Google Scholar
  • 13.

    Pyenson, N. D., Kelley, N. P. & Parham, J. F. Marine tetrapod macroevolution: physical and biological drivers on 250 Ma of invasions and evolution in ocean ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol. 400, 1–8 (2014).

    • Google Scholar
  • 14.

    Fitzgerald Erich, M. G. A bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales. Proc. R. Soc. Lond. B 273, 2955–2963 (2006).

    • Google Scholar
  • 15.

    Zachos, J. C., Quinn, T. M. & Salamy, K. A. High-resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene–Oligocene climate transition. Paleoceanography 11, 251–266 (1996).

    • Google Scholar
  • 16.

    Zhou, L. & Kyte, F. T. Sedimentation history of the South Pacific pelagic clay province over the last 85 million years inferred from the geochemistry of deep sea drilling project Hole 596. Paleoceanography 7, 441–465 (1992).

    • Google Scholar
  • 17.

    Mackensen, A. & Ehrmann, W. U. Middle Eocene through early Oligocene climate history and paleoceanography in the Southern Ocean: stable oxygen and carbon isotopes from ODP sites on Maud Rise and Kerguelen Plateau. Mar. Geol. 108, 1–27 (1992).

    • Google Scholar
  • 18.

    Lyle, M. W. et al. Site 1217. Proc. Ocean Drill. Prog. Init. Repts 199, https://doi.org/10.2973/odp.proc.ir.199.110.2002 (2002).

  • 19.

    van Peer, T. E. et al. Data report: revised composite depth scale and splice for IODP Site U1406. Proc. Integr. Ocean Drill. Program 342, https://doi.org/10.2204/iodp.proc.342.202.2017 (2017).

  • 20.

    Sibert, E. C., Hull, P. M. & Norris, R. D. Resilience of Pacific pelagic fish across the Cretaceous/Palaeogene mass extinction. Nat. Geosci. 7, 667–670 (2014).

    • Google Scholar
  • 21.

    Salamy, K. A. & Zachos, J. C. Latest Eocene–early oligocene climate change and Southern Ocean fertility: inferences from sediment accumulation and stable isotope data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 145, 61–77 (1999).

    • Google Scholar
  • 22.

    Anderson, L. D. & Delaney, M. L. Middle Eocene to early Oligocene paleoceanography from Agulhas Ridge, Southern Ocean (Ocean Drilling Program Leg 177, Site 1090). Paleoceanography 20, PA1013 (2005).

    • Google Scholar
  • 23.

    Erhardt, A. M., Pälike, H. & Paytan, A. High-resolution record of export production in the eastern equatorial Pacific across the Eocene-Oligocene transition and relationships to global climatic records. Paleoceanography 28, 130–142 (2013).

    • Google Scholar
  • 24.

    Griffith, E. et al. Export productivity and carbonate accumulation in the Pacific Basin at the transition from a greenhouse to icehouse climate (late Eocene to early Oligocene). Paleoceanography 25, PA3212 (2010).

    • Google Scholar
  • 25.

    Houben, A. J. et al. Reorganization of Southern Ocean plankton ecosystem at the onset of Antarctic glaciation. Science 340, 341–344 (2013).

    • Google Scholar
  • 26.

    Faul, K. L. & Delaney, M. L. A comparison of early Paleogene export productivity and organic carbon burial flux for Maud Rise, Weddell Sea, and Kerguelen Plateau, South Indian Ocean. Paleoceanography 25, PA3214 (2010).

    • Google Scholar
  • 27.

    Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).

    • Google Scholar
  • 28.

    Cermeno, P., Falkowski, P. G., Romero, O. E., Schaller, M. F. & Vallina, S. M. Continental erosion and the Cenozoic rise of marine diatoms. Proc. Natl Acad. Sci. USA 112, 4239–4244 (2015).

    • Google Scholar
  • 29.

    Villa, G., Fioroni, C., Persico, D., Roberts, A. P. & Florindo, F. Middle Eocene to late Oligocene Antarctic glaciation/deglaciation and Southern Ocean productivity. Paleoceanography 29, 223–237 (2014).

    • Google Scholar
  • 30.

    Pepin, P. Effect of temperature and size on development, mortality, and survival rates of the pelagic early life history stages of marine fish. Can. J. Fish. Aquat.Sci. 48, 503–518 (1991).

    • Google Scholar
  • 31.

    Barrera-Oro, E. The role of fish in the Antarctic marine food web: differences between inshore and offshore waters in the southern Scotia Arc and West Antarctic Peninsula. Antarct. Sci. 14, 293–309 (2003).

    • Google Scholar
  • 32.

    Patarnello, T., Bargelloni, L., Varotto, V. & Battaglia, B. Krill evolution and the Antarctic Ocean currents: evidence of vicariant speciation as inferred by molecular data. Mar. Biol. 126, 603–608 (1996).

    • Google Scholar
  • 33.

    Jarman, S. N., Elliott, N. G., Nicol, S. & McMinn, A. Molecular phylogenetics of circumglobal Euphausia species (Euphausiacea: Crustacea). Can. J. Fish. Aquat.Sci. 57, 51–58 (2000).

    • Google Scholar
  • 34.

    D’Amato, M. E., Harkins, G. W., de Oliveira, T., Teske, P. R. & Gibbons, M. J. Molecular dating and biogeography of the neritic krill Nyctiphanes. Mar. Biol. 155, 243–247 (2008).

    • Google Scholar
  • 35.

    Sibert, E., Friedman, M., Hull, P., Hunt, G. & Norris, R. Two pulses of morphological diversification in Pacific pelagic fishes following the Cretaceous–Palaeogene mass extinction. Proc. R. Soc. Lond. B 285, 20181194 (2018).

    • Google Scholar
  • 36.

    Clementz, M. T., Fordyce, R. E., Peek, S. L. & Fox, D. L. Ancient marine isoscapes and isotopic evidence of bulk-feeding by Oligocene cetaceans. Palaeogeogr. Palaeoclimatol. Palaeoecol. 400, 28–40 (2014).

    • Google Scholar
  • 37.

    Fordyce, R. E. & Marx, F. G. Gigantism precedes filter feeding in baleen whale evolution. Curr. Biol. 28, 1670–1676 (2018).

    • Google Scholar
  • 38.

    Fordyce, R. E. & Jones, C. in Penguin Biology (eds Davis, L. S. & Darby, J. T.) 419–446 (Academic Press, 1990).

  • 39.

    Rogers, A. D. Evolution and biodiversity of Antarctic organisms: a molecular perspective. Phil. Trans. R. Soc. Lond. 362, 2191–2214 (2007).

    • Google Scholar
  • 40.

    Baker, A. J., Pereira, S. L., Haddrath, O. P. & Edge, K.-A. Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling. Proc. R. Soc. Lond. B 273, 11–17 (2006).

    • Google Scholar
  • 41.

    Near, T. J. et al. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc. Natl Acad. Sci. 109, 3434–3439 (2012).

    • Google Scholar
  • 42.

    Polovina, J. J., Howell, E. A. & Abecassis, M. Ocean’s least productive waters are expanding. Geophys. Res. Lett. 35, L03618 (2008).

    • Google Scholar
  • 43.

    Cramer, B. S., Miller, K. G., Barrett, P. J. & Wright, J. D. Late Cretaceous–Neogene trends in deep ocean temperature and continental ice volume: reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history. J. Geophys. Res. Oceans 116, C12023 (2011).

    • Google Scholar
  • 44.

    Sibert, E. C., Cramer, K. L., Hastings, P. A. & Norris, R. D. Methods for isolation and quantification of microfossil fish teeth and elasmobranch dermal denticles (ichthyoliths) from marine sediments. Palaeontol. Electron. 20, 1–14 (2017).

    • Google Scholar
  • 45.

    Hsu, K. J. et al. Site 522. Initial Rep. Deep Sea 73, 187–270 (1984).

    • Google Scholar
  • 46.

    Dadey, K. A., Janecek, T. & Klaus, A. Dry-bulk density: its use and determination. Proc. Ocean Drill. Prog. Sci. Results 126, 551–554 (1992).

    • Google Scholar
  • 47.

    Snoeckx, H., Rea, D., Jones, C. & Ingram, B. Eolian and silica deposition in the central North Pacific: results from Sites 885/886. Proc. Ocean Drill. Prog. Sci. Results 145, 219–230 (1995).

    • Google Scholar
  • 48.

    Norris, R. D. et al. Site U1406. Proc. Integr. Ocean Drill. Program 342, https://doi.org/10.2204/iodp.proc.342.107.2014 (2014).

  • 49.

    Tauxe, L., Tucker, P., Petersen, N. P. & Labrecque, J. L. The magnetostratigraphy of Leg 73 sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 42, 65–90 (1983).

    • Google Scholar
  • 50.

    Gradstein, F. M., Ogg, J. G. & Schmitz, M. The Geologic Time Scale 2012 (Elsevier, 2012).

  • 51.

    Hsiang, A. Y. et al. AutoMorph: Accelerating morphometrics with automated 2D and 3D image processing and shape extraction. Methods Ecol. Evol. 9, 605–612 (2018).

    • Google Scholar
  • 52.

    Iverson, R. L. Control of marine fish production. Limnol. Oceanogr. 35, 1593–1604 (1990).

    • Google Scholar
  • 53.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4-4 (2017); https://CRAN.R-project.org/package=vegan

  • 54.

    Liow, L. H. & Nichols, J. D. Estimating rates and probabilities of origination and extinction using taxonomic occurrence data: capture–mark–recapture (CMR) approaches. Paleontol. Soc. Papers 16, 81–94 (2010).

    • Google Scholar

  • Source: Ecology - nature.com

    Machine learning picks out hidden vibrations from earthquake data

    Evolutionary Traits that Enable Scleractinian Corals to Survive Mass Extinction Events