in

Genetic epidemiology of the Alpine ibex reservoir of persistent and virulent brucellosis outbreak

  • 1.

    Tompkins, D. M., Dunn, A. M., Smith, M. J. & Telfer, S. Wildlife diseases: from individuals to ecosystems. J. Anim. Ecol. 80, 19–38 (2011).

  • 2.

    Galvani, A. P. & May, R. M. Epidemiology: dimensions of superspreading. Nat. 438, 293 (2005).

  • 3.

    Matthews, L. et al. Heterogeneous shedding of Escherichia coli O157 in cattle and its implications for control. Proc. Natl Acad. Sci. 103, 547–552 (2006).

  • 4.

    Wilfert, L. & Schmid-Hempel, P. The genetic architecture of susceptibility to parasites. BMC Evolut. Biol. 8, 187 (2008).

  • 5.

    Acevedo-Whitehouse, K. & Cunningham, A. Is MHC enough for understanding wildlife immunogenetics? Trends Ecol. Evol. 21, 433–438 (2006).

  • 6.

    Bernatchez, L. & Landry, C. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J. Evol. Biol. 16, 363–377 (2003).

  • 7.

    Piertney, S. & Oliver, M. The evolutionary ecology of the major histocompatibility complex. Heredity 96, 7–21 (2005).

  • 8.

    Sommer, S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front. Zool. 2, 16 (2005).

  • 9.

    Jepson, A. et al. Quantification of the relative contribution of major histocompatibility complex (MHC) and non-MHC genes to human immune responses to foreign antigens. Infect. Immun. 65, 872–876 (1997).

  • 10.

    Ammerdorffer, A. et al. Recognition of Coxiella burnetii by Toll-like Receptors and Nucleotide-Binding Oligomerization Domain–like Receptors. J. Infect. Dis. 211, 978–987 (2014).

  • 11.

    Netea, M. et al. Nucleotide-binding oligomerization domain-2 modulates specific TLR pathways for the induction of cytokine release. J. Immunol. 174, 6518–6523 (2005).

  • 12.

    Tschirren, B. et al. Polymorphisms at the innate immune receptor TLR2 are associated with Borrelia infection in a wild rodent population. Proc. Biol. Sci. 280, 20130364 (2013).

  • 13.

    Sutton, J. T., Nakagawa, S., Robertson, B. C. & Jamieson, I. G. Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes. Mol. Ecol. 20, 4408–4420 (2011).

  • 14.

    Mainguy, J., Worley, K., Côté, S. D. & Coltman, D. W. Low MHC DRB class II diversity in the mountain goat: past bottlenecks and possible role of pathogens and parasites. Conserv. Genet. 8, 885–891 (2006).

  • 15.

    Bollmer, J. L., Vargas, F. H. & Parker, P. G. Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus). Immunogenetics 59, 593–602 (2007).

  • 16.

    Oliver, M. K. & Piertney, S. B. Selection maintains MHC diversity through a natural population bottleneck. Mol. Biol. evolution 29, 1713–1720 (2012).

  • 17.

    Quéméré, E. et al. Immunogenetic heterogeneity in a widespread ungulate: the European roe deer (Capreolus capreolus). Molecular ecology (2015).

  • 18.

    Takahata, N. & Nei, M. Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genet. 124, 967–978 (1990).

    • CAS
    • Google Scholar
  • 19.

    Cook, L. M. The rise and fall of the carbonaria form of the peppered moth. Q. Rev. Biol. 78, 399–417 (2003).

  • 20.

    Doherty, P. C. & Zinkernagel, R. M. Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nat. 256, 50 (1975).

  • 21.

    Lewontin, R. C. & Hubby, J. L. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genet. 54, 595 (1966).

    • CAS
    • Google Scholar
  • 22.

    Hill, A. V. HLA associations with malaria in Africa: some implications for MHC evolution. In Molecular evolution of the major histocompatibility complex 403–420 (Springer, 1991).

  • 23.

    Levene, H. Genetic equilibrium when more than one ecological niche is available. Am. Naturalist 87, 331–333 (1953).

    • Article
    • Google Scholar
  • 24.

    Wittmann, M. J., Bergland, A. O., Feldman, M. W., Schmidt, P. S. & Petrov, D. A. Seasonally fluctuating selection can maintain polymorphism at many loci via segregation lift. Proc. Natl Acad. Sci. 114, E9932–E9941 (2017).

  • 25.

    Godfroid, J. et al. A “One Health” surveillance and control of brucellosis in developing countries: moving away from improvisation. Comp. immunology, microbiology Infect. Dis. 36, 241–248 (2013).

    • Article
    • Google Scholar
  • 26.

    Ferroglio, E., Tolari, F., Bollo, E. & Bassano, B. Isolation of Brucella melitensis from alpine ibex. J. Wildl. Dis. 34, 400–402 (1998).

  • 27.

    Garin-Bastuji, B., Oudar, J., Richard, Y. & Gastellu, J. Isolation of Brucella melitensis biovar 3 from a chamois (Rupicapra rupicapra) in the southern French Alps. J. Wildl. Dis. 26, 116–118 (1990).

  • 28.

    Muñoz, P. M. et al. Spatial distribution and risk factors of brucellosis in Iberian wild ungulates. BMC Infect. Dis. 10, 46 (2010).

  • 29.

    Marchand, P. et al. Sociospatial structure explains marked variation in brucellosis seroprevalence in an Alpine ibex population. Sci. Rep. 7, 15592 (2017).

  • 30.

    Mailles, A. et al. Re-emergence of brucellosis in cattle in France and risk for human health. Eurosurveillance 17, 20227 (2012).

    • PubMed
    • Google Scholar
  • 31.

    Iacoboni, P. A. et al. Polymorphisms at the 3′ untranslated region of SLC11A1 gene are associated with protection to Brucella infection in goats. Veterinary immunology immunopathology 160, 230–234 (2014).

  • 32.

    Prakash, O. et al. Polymorphism of cytokine and innate immunity genes associated with bovine brucellosis in cattle. Mol. Biol. Rep. 41, 2815–2825 (2014).

  • 33.

    Biebach, I. & Keller, L. F. Inbreeding in reintroduced populations: the effects of early reintroduction history and contemporary processes. Conserv. Genet. 11, 527–538 (2010).

    • Article
    • Google Scholar
  • 34.

    Grossen, C., Biebach, I., Angelone-Alasaad, S., Keller, L. F. & Croll, D. Population genomics analyses of European ibex species show lower diversity and higher inbreeding in reintroduced populations. Evolut. Appl. 11, 123–139 (2018).

  • 35.

    Brambilla, A., Biebach, I., Bassano, B., Bogliani, G. & von Hardenberg, A. Direct and indirect causal effects of heterozygosity on fitness-related traits in Alpine ibex. Proc. Biol. Sci. 282, 20141873 (2015).

  • 36.

    Capparelli, R. et al. Protective effect of the Nramp1 BB genotype against Brucella abortus in the water buffalo (Bubalus bubalis). Infect. Immun. 75, 988–996 (2007).

  • 37.

    Godfroid, J., Garin-Bastuji, B., Saegerman, C. & Blasco, J. M. Brucellosis in terrestrial wildlife. Revue Scientifique et Technique. Office International des Epizooties (2013).

  • 38.

    Yang, A., Gomez, J. P., Haase, C. G., Proffitt, K. M. & Blackburn, J. K. Effects Of brucellosis serologic status on physiology and behavior of rocky mountain elk (Cervus canadensis nelsoni) in southwestern Montana. Journal of wildlife diseases (2018).

  • 39.

    Schaschl, H., Wandeler, P., Suchentrunk, F., Obexer-Ruff, G. & Goodman, S. J. Selection and recombination drive the evolution of MHC class II DRB diversity in ungulates. Heredity 97, 427–437 (2006).

  • 40.

    Grossen, C. et al. Introgression from domestic goat generated variation at the major histocompatibility complex of alpine ibex. PLoS Genet. 10, e1004438 (2014).

  • 41.

    Zachos, F. E. et al. Genetic structure and effective population sizes in European red deer (Cervus elaphus) at a continental scale: insights from microsatellite DNA. J. Heredity 107, 318–326 (2016).

  • 42.

    Biebach, I. & Keller, L. F. A strong genetic footprint of the re-introduction history of Alpine ibex (Capra ibex ibex). Mol. Ecol. 18, 5046–5058 (2009).

  • 43.

    Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evolution 17, 230–241 (2002).

    • Article
    • Google Scholar
  • 44.

    Saccheri, I. et al. Inbreeding and extinction in a butterfly metapopulation. Nat. 392, 491–494 (1998).

  • 45.

    Brambilla, A., Keller, L., Bassano, B. & Grossen, C. Heterozygosity–fitness correlation at the major histocompatibility complex despite low variation in Alpine ibex (Capra ibex). Evolut. Appl. 11, 631–644 (2018).

    • Article
    • Google Scholar
  • 46.

    Bateson, Z. W. et al. Specific alleles at immune genes, rather than genome-wide heterozygosity, are related to immunity and survival in the critically endangered Attwater’s prairie-chicken. Mol. Ecol. 25, 4730–4744 (2016).

  • 47.

    Grueber, C. E. et al. Reciprocal translocation of small numbers of inbred individuals rescues immunogenetic diversity. Mol. Ecol. 26, 2660–2673 (2017).

  • 48.

    Angelone, S. et al. Hidden MHC genetic diversity in the Iberian ibex (Capra pyrenaica). BMC Genet. 19, 28 (2018).

  • 49.

    Hughes, A. L. & Yeager, M. Natural selection and the evolutionary history of major histocompatibility complex loci. Front. Biosci. 3, d509–516 (1998).

  • 50.

    Werling, D., Jann, O., Offord, V., Glass, E. & Coffey, T. Variation matters: TLR structure and species-specific pathogen recognition. Trends Immunol. 30, 124–130 (2009).

  • 51.

    Love, W., Dobbs, N., Tabor, L. & Simecka, J. W. Toll-like receptor 2 (TLR2) plays a major role in innate resistance in the lung against murine Mycoplasma. PLoS one 5, e10739 (2010).

  • 52.

    Zuo, L., Wu, Y. & You, X. Mycoplasma lipoproteins and Toll-like receptors. J. Zhejiang Univ. Sci. B 10, 67 (2009).

  • 53.

    Campos, M. A. et al. Role of Toll-like receptor 4 in induction of cell-mediated immunity and resistance to Brucella abortus infection in mice. Infect. Immun. 72, 176–186 (2004).

  • 54.

    Oliveira, S. C., de Almeida, L. A., Carvalho, N. B., Oliveira, F. S. & Lacerda, T. L. Update on the role of innate immune receptors during Brucella abortus infection. Veterinary immunology immunopathology 148, 129–135 (2012).

  • 55.

    Alim, M. A., Fu, Y., Wu, Z., Zhao, S. & Cao, J. Single Nucleotide Polymorphisms of Toll-Like Receptors and Association with Haemonchus contortus Infection in Goats. Pak. Veterinary J. 36, 286–291 (2016).

    • CAS
    • Google Scholar
  • 56.

    Mucha, R., Bhide, M., Chakurkar, E., Novak, M. & Mikula, I. Sr Toll-like receptors TLR1, TLR2 and TLR4 gene mutations and natural resistance to Mycobacterium avium subsp. paratuberculosis infection in cattle. Veterinary immunology immunopathology 128, 381–388 (2009).

  • 57.

    Kloch, A. et al. Signatures of balancing selection in toll-like receptor (TLRs) genes–novel insights from a free-living rodent. Sci. Rep. 8, 8361 (2018).

  • 58.

    Quemere, E. et al. Fluctuating pathogen-mediated selection drives the maintenance of innate immune gene polymorphism in a widespread wild ungulate. bioRxiv 458216 (2018).

  • 59.

    Spurgin, L. & Richardson, D. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc. Biol. Sci. 277, 979–988 (2010).

  • 60.

    Borriello, G. et al. Genetic resistance to Brucella abortus in the water buffalo (Bubalus bubalis). Infect. Immun. 74, 2115–2120 (2006).

  • 61.

    Frankham, R. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143, 1919–1927 (2010).

    • Article
    • Google Scholar
  • 62.

    Blanchong, J. A., Robinson, S. J., Samuel, M. D. & Foster, J. T. Application of genetics and genomics to wildlife epidemiology. J. Wildl. Manag. 80, 593–608 (2016).

    • Article
    • Google Scholar
  • 63.

    McKnight, D. T., Schwarzkopf, L., Alford, R. A., Bower, D. S. & Zenger, K. R. Effects of emerging infectious diseases on host population genetics: a review. Conserv. Genet. 18, 1235–1245 (2017).

    • Article
    • Google Scholar
  • 64.

    Coltman, D. W., Wilson, K., Pilkington, J. G., Stear, M. J. & Pemberton, J. M. A microsatellite polymorphism in the gamma interferon gene is associated with resistance to gastrointestinal nematodes in a naturally-parasitized population of Soay sheep. Parasitology 122, 571–582 (2001).

  • 65.

    Maudet, C. et al. Microsatellite DNA and recent statistical methods in wildlife conservation management: applications in Alpine ibex [Capra ibex (ibex)]. Mol. Ecol. 11, 421–436 (2002).

  • 66.

    Gauthier, D. & Villaret, J.-C. La réintroduction en France du bouquetin des Alpes. In Colloque sur les” Réintroductions Et Renforcements D’espèces Animales En France”, 6-8 décembre 1988, Saint-Jean-du-Gard, France, FRA (Société nationale de protection de la nature et d’acclimatation de France …, 1990).

  • 67.

    Lambert, S. et al. High shedding potential and significant individual heterogeneity in naturally-infected Alpine ibex (Capra ibex) with Brucella melitensis. Front. Microbiology 9, 1065 (2018).

    • Article
    • Google Scholar
  • 68.

    Hars, J. et al. Un foyer de brucellose chez les ongulés sauvages du massif du Bargy en Haute-Savoie. Bull. Epidemiol. Santé Anim. Alim 60, 2–6 (2013).

    • Google Scholar
  • 69.

    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).

  • 70.

    Vacca, G. M. et al. Chromosomal localisation and genetic variation of the SLC11A1 gene in goats (Capra hircus). Veterinary J. 190, 60–65 (2011).

  • 71.

    Blackwell, J. M. et al. SLC11A1 (formerly NRAMP1) and disease resistance: Microreview. Cell. microbiology 3, 773–784 (2001).

  • 72.

    Piry, S., Guivier, E., Realini, A. & Martin, J. SESAME Barcode: NGS-oriented software for amplicon characterization–application to species and environmental barcoding. Mol. Ecol. Resour. 12, 1151–1157 (2012).

  • 73.

    Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinforma. 25, 1451–1452 (2009).

  • 74.

    Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. (1996).

  • 75.

    Goudet, J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). (2001).

  • 76.

    Coltman, D. W., Pilkington, J. G., Smith, J. A. & Pemberton, J. M. Parasite-Mediated Selection Against Inbred Soay Sheep In A Free-Living Island Populaton. Evolution 53, 1259–1267 (1999).

    • PubMed
    • Google Scholar
  • 77.

    Stoffel, M. A. et al. inbreedR: an R package for the analysis of inbreeding based on genetic markers. Methods Ecol. Evolution 7, 1331–1339 (2016).

    • Article
    • Google Scholar
  • 78.

    Anderson, D. R. Model based inference in the life sciences: a primer on evidence. (Springer Science & Business Media, 2007).

  • 79.

    Burnham, K. & Anderson, D. Model Selection and Multi-Model Inference: a practical information- theoretic approach. (Springer-Verlag, 2002).

  • 80.

    Symonds, M. R. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).

    • Article
    • Google Scholar
  • 81.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer Science & Business Media, 2009).

  • 82.

    Bates, D., Maechler, M. & Bolker, B. lme4: Linear mixed-effects models using S4 classes. (2012).

  • 83.

    Barton, K. MuMIn: multi-model inference. R package version 1. 0. 0. http://r-forge.r-project. org/projects/mumin/ (2009).

  • 84.

    Mazerolle, M. J. AICcmodavg: Model selection and multimodel inference based on (Q) AIC (c). R. package version 1, 35 (2013).

    • Google Scholar

  • Source: Ecology - nature.com

    Chance and necessity in the pleiotropic consequences of adaptation for budding yeast

    How plants protect themselves from sun damage