in

Effect of life stage and pesticide exposure on the gut microbiota of Aedes albopictus and Culex pipiens L

  • 1.

    Hazen, T. C., Rocha, A. M., Techtmann, S. M., Steffan, R. J. & Ramos, J. L. Advances in monitoring environmental microbes. Curr. Opin. Biotechnol. 24, 526–533 (2013).

    CAS  PubMed  Google Scholar 

  • 2.

    Gotelli, N. & Colwell, R. Estimating species richness. In Biological Diversity. Frontiers in Measurement and Assessment (ed. Magurran and B. J. McGill) 39–54 https://doi.org/10.2307/3547060 (Oxford University Press, 2011).

  • 3.

    Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Toccalino, P. L., Gilliom, R. J., Lindsey, B. D. & Rupert, M. G. Pesticides in groundwater of the United States: decadal-scale changes, 1993-2011. Ground Water 52, 112–125 (2014).

    CAS  PubMed  Google Scholar 

  • 5.

    Nkya, T. E., Akhouayri, I., Kisinza, W. & David, J.-P. Impact of environment on mosquito response to pyrethroid insecticides: Facts, evidences and prospects. Insect Biochem. Mol. Biol. 43, 407–416 (2013).

    CAS  PubMed  Google Scholar 

  • 6.

    Harbison, J. E. et al. Standardized operational evaluations of catch basin larvicides from seven mosquito control programs in the midwestern United States during 2017. J. Am. Mosq. Control Assoc. 34, 107–116 (2018).

    PubMed  Google Scholar 

  • 7.

    Imfeld, G. & Vuilleumier, S. Measuring the effects of pesticides on bacterial communities in soil: A critical review. Eur. J. Soil Biol. 49, 22–30 (2012).

    CAS  Google Scholar 

  • 8.

    Bonner, M. R. et al. Malathion exposure and the incidence of cancer in the agricultural health study. Am. J. Epidemiol. 166, 1023–1034 (2007).

    PubMed  Google Scholar 

  • 9.

    Stark, P. M., Fredregill, C. L., Nolan, M. S. & Debboun, M. Field cage insecticide resistance tests against Culex quinquefasciatus Say (Diptera: Culicidae) in Harris County, Texas, USA. J. Vector Ecol. 42, 279–288 (2017).

    PubMed  Google Scholar 

  • 10.

    Gruessner, B. & Watzin, M. C. Response of aquatic communities from a Vermont stream to environmentally realistic atrazine exposure in laboratory microcosms. Environ. Toxicol. Chem. 15, 410–419 (1996).

    CAS  Google Scholar 

  • 11.

    Downing, H. F. et al. Effects of the agricultural pesticides atrazine, chlorothalonil, and endosulfan on South Florida microbial assemblages. Ecotoxicology 13, 245–260 (2004).

    CAS  PubMed  Google Scholar 

  • 12.

    Graymore, M., Stagnitti, F. & Allinson, G. Impacts of atrazine in aquatic ecosystems. Environ. Int. 26, 483–495 (2001).

    CAS  PubMed  Google Scholar 

  • 13.

    Van Der Kraak, G. J., Hosmer, A. J., Hanson, M. L., Kloas, W. & Solomon, K. R. Effects of atrazine in fish, amphibians, and reptiles: An analysis based on quantitative weight of evidence. Critical Reviews in Toxicology 44, 1–66 (2014).

    Google Scholar 

  • 14.

    Bara, J. J., Montgomery, A. & Muturi, E. J. Sublethal effects of atrazine and glyphosate on life history traits of Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Parasitol. Res. 113, 2879–2886 (2014).

    PubMed  Google Scholar 

  • 15.

    De Souza, M. L. et al. Molecular basis of a bacterial consortium: Interspecies catabolism of atrazine. Appl. Environ. Microbiol. 64, 178–184 (1998).

    PubMed  PubMed Central  Google Scholar 

  • 16.

    Muturi, E. J., Orindi, B. O. & Kim, C. H. Effect of leaf type and pesticide exposure on abundance of bacterial taxa in mosquito larval habitats. PLoS One 8, e71812 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Jason Krutz, L. et al. Agronomic and environmental implications of enhanced s-triazine degradation. Pest Manag. Sci. 66, 461–481 (2010).

    CAS  PubMed  Google Scholar 

  • 18.

    Delorenzo, M. E., Lauth, J., Pennington, P. L., Scott, G. I. & Ross, P. E. Atrazine effects on the microbial food web in tidal creek mesocosms. Aquat. Toxicol. 46, 241–251 (1999).

    CAS  Google Scholar 

  • 19.

    Alvarenga, N., Birolli, W. G. & Porto, A. L. M. Biodegradation of organophosphate and pyrethroid pesticides by microorganims. In Pollutants in Buildings, Water and Living Organisms vol. 7 85–121 (Springer International Publishing Switzerland, 2015).

  • 20.

    Dye-braumuller, K., Fredregill, C. & Debboun, M. Mosquito control. in Mosquitoes, Communities, and Public Health in Texas (eds. Debboun, M., Nava, M. R. & Rueda, L.) 249–278 https://doi.org/10.1016/B978-0-12-814545-6.00008-0 (Elsevier Inc., 2020).

  • 21.

    Singh, B., Kaur, J. & Singh, K. Microbial degradation of an organophosphate pesticide, malathion. Crit Rev Microbiol 40, 1040–841 (2014).

    Google Scholar 

  • 22.

    Muturi, E. J., Costanzo, K., Kesavaraju, B. & Alto, B. W. Can pesticides and larval competition alter susceptibility of Aedes mosquitoes (Diptera: Culicidae) to arbovirus infection? J. Med. Entomol. 48, 429–436 (2011).

    CAS  PubMed  Google Scholar 

  • 23.

    Muturi, E. J., Costanzo, K., Kesavaraju, B., Lampman, R. & Alto, B. W. Interaction of a pesticide and larval competition on life history traits of Culex pipiens. Acta Trop. 116, 141–146 (2010).

    CAS  PubMed  Google Scholar 

  • 24.

    Amweg, E. L., Weston, D. P. & Ureda, N. M. Use and toxicity of pyrethroid pesticides in the central valley, California, USA. Environ. Toxicol. Chem. 24, 966–972 (2005).

    CAS  PubMed  Google Scholar 

  • 25.

    Thatheyus, A. J. & Gnana Selvam, A. D. Synthetic pyrethroids: Toxicity and biodegradation. Appl. Ecol. Environ. Sci. 1, 33–36 (2013).

    CAS  Google Scholar 

  • 26.

    Ding, Y., Harwood, A. D., Foslund, H. M. & Lydy, M. J. Distribution and toxicity of sediment-associated pesticides in urban and agricultural waterways from Illinois, USA. Environ. Toxicol. Chem. 29, 149–157 (2010).

    CAS  PubMed  Google Scholar 

  • 27.

    Mebrahtu, Y. B., Norem, J. & Taylor, M. Inheritance of larval resistance to permethrin in Aedes aegypti and association with sex ratio distortion and life history variation. Am. J. Trop. Med. Hyg. 56, 456–465 (1997).

    CAS  Google Scholar 

  • 28.

    Milam, C. D., Farris, J. L. & Wilhide, J. D. Evaluating mosquito control pesticides for effect on target and nontarget organisms. Arch. Environ. Contam. Toxicol. 39, 324–328 (2000).

    CAS  PubMed  Google Scholar 

  • 29.

    Muturi, E. J., Donthu, R. K., Fields, C. J., Moise, I. K. & Kim, C.-H. Effect of pesticides on microbial communities in container aquatic habitats. Sci. Rep. 7, 44565 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Widenfalk, A., Bertilsson, S., Sundh, I. & Goedkoop, W. Effects of pesticides on community composition and activity of sediment microbes – responses at various levels of microbial community organization. Environ. Pollut. 152, 576–584 (2008).

    CAS  PubMed  Google Scholar 

  • 31.

    Widenfalk, A., Svensson, J. M. & Goedkoop, W. Effects of the pesticides captan, deltamethrin, isoproturon, and primicarb on the microbial community of a freshwater sediment. Env Tox Chem 23, 1920–1927 (2004).

    CAS  Google Scholar 

  • 32.

    Päiviö, J. Effects of modern pesticides on the microbial community in a natural and in an artificial sediment-a microcosm study. Rapport-Sveriges Lantbruksuniversitet, Institutionen … (Swedish University of Agricultural Sciences, 1999).

  • 33.

    Helbing, C. M., Moorhead, D. L., Mitchell, A. L. & Mitchell, L. Population dynamics of Culex restuans and Culex pipiens (Diptera: Culicidae) related to climatic factors in northwest Ohio. Environ. Entomol 44, 1022–1028 (2015).

    CAS  PubMed  Google Scholar 

  • 34.

    Lampman, R. L. & Novak, R. J. Oviposition preferences of Culex pipiens and Culex restuans for infusion-baited traps. J. Am. Mosq. Control Assoc. 12, 23–32 (1996).

    CAS  PubMed  Google Scholar 

  • 35.

    Reiter, P. A standardized procedure for the quantitative surveillance of certain Culex mosquitoes by egg raft collection. J. Am. Mosq. Control Assoc. 2, 219–21 (1986).

    CAS  PubMed  Google Scholar 

  • 36.

    Vanlandingham, D. L., Higgs, S. & Huang, Y.-J. S. Aedes albopictus (Diptera: Culicidae) and mosquito-borne viruses in the United States. J. Med. Entomol. 53, 1024–1028 (2016).

    PubMed  Google Scholar 

  • 37.

    Lenormand, T., Bourguet, D., Guillemaud, T. & Raymond, M. Tracking the evolution of insecticide resistance in the mosquito Culex pipiens. Nature 400, 861–864 (1999).

    ADS  CAS  PubMed  Google Scholar 

  • 38.

    Joyce, A. L., Melese, E., Ha, P. T. & Inman, A. Population genetic structure of the Culex pipiens (Diptera: Culicidae) complex, vectors of West Nile virus, in five habitats. Parasites and Vectors 11 (2018).

  • 39.

    Reiskind, M. H. & Wilson, M. L. Interspecific competition between larval Culex restuans Theobald and Culex pipiens L. (Diptera: Culicidae) in Michigan. J. Med. Entomol. 45, 20–27 (2008).

    PubMed  Google Scholar 

  • 40.

    Ross, H. H. The colonization of temperate North America by mosquitoes and man. Mosq. News 24, 103–118 (1964).

    Google Scholar 

  • 41.

    Kunkel, K. E., Novak, R. J., Lampman, R. L. & Gu, W. Modeling the impact of variable climatic factors on the crossover of Culex restauns and Culex pipiens (Diptera: Culicidae), vectors of West Nile virus in Illinois. Am. J. Trop. Med. Hyg. 74, 168–173 (2006).

    Google Scholar 

  • 42.

    Carolina, S. et al. Overwintering and establishment of Aedes albopictus (Diptera: Culicidae) in an urban La Crosse virus enzootic site in Illinois. J. Med. Entomol. 37, 559–570 (2000).

    Google Scholar 

  • 43.

    Moore, C. G. & Mitchell, C. J. Aedes albopictus in the United States: Ten-year presence and public health implications. Emerg. Infect. Dis. 3, 329–334 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Johnson, T. L. et al. Modeling the Environmental Suitability for Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the contiguous United States. J. Med. Entomol. 54, 1605–1614 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Google Scholar 

  • 46.

    Crist, T. O. & Veech, J. A. Additive partitioning of rarefaction curves and species-area relationships: Unifying a-, – and??-diversity with sample size and habitat area. Ecol. Lett. 9, 923–932 (2006).

    PubMed  Google Scholar 

  • 47.

    Chouin‐Carneiro, T. et al. Wolbachia strain w AlbA blocks Zika virus transmission in Aedes aegypti. Med. Vet. Entomol. 34, 116–119 (2020).

    PubMed  Google Scholar 

  • 48.

    DeLorenzo, M. E., Scott, G. I. & Ross, P. E. Toxicity of pesticides to aquatic microorganisms: A review. Environ. Toxicol. Chem. 20, 84–98 (2001).

    CAS  PubMed  Google Scholar 

  • 49.

    Zhan, H., Huang, Y., Lin, Z., Bhatt, P. & Chen, S. New insights into the microbial degradation and catalytic mechanism of synthetic pyrethroids. Environ. Res. 182, 109138 (2020).

    CAS  PubMed  Google Scholar 

  • 50.

    Staley, Z. R., Harwood, V. J. & Rohr, J. R. A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems. Critical Reviews in Toxicology 45, 813–836 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Johnsen, K., Jacobsen, C., Torsvik, V. & Sørensen, J. Pesticide effects on bacterial diversity in agricultural soils – a review. Biol. Fertil. Soils 33, 443–453 (2001).

    CAS  Google Scholar 

  • 52.

    Lee, S., Gan, J., Kim, J. S., Kabashima, J. N. & Crowley, D. E. Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environ. Toxicol. Chem. 23, 1–6 (2004).

    CAS  PubMed  Google Scholar 

  • 53.

    Bhatt, P., Huang, Y., Zhan, H. & Chen, S. Insight into microbial applications for the biodegradation of pyrethroid insecticides. Front. Microbiol. 10, 1–19 (2019).

    Google Scholar 

  • 54.

    Gimonneau, G. et al. Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. Infect. Genet. Evol. 28, 715–724 (2014).

    PubMed  Google Scholar 

  • 55.

    Wang, Y., Gilbreath, T. M., Kukutla, P., Yan, G. & Xu, J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One 6, 1–9 (2011).

    Google Scholar 

  • 56.

    Coon, K. L., Vogel, K. J., Brown, M. R. & Strand, M. R. Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 23, 2727–2739 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Dickson, L. B. et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci. Adv. 3 (2017).

  • 58.

    Coon, K. L., Brown, M. R. & Strand, M. R. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol. Ecol. 25, 5806–5826 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    David, M. R., Santos, L. M. B., Dos, Vicente, A. C. P. & Maciel-de-Freitas, R. Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan. Mem. Inst. Oswaldo Cruz 111, 577–587 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 60.

    Briones, A. M., Shililu, J., Githure, J., Novak, R. & Raskin, L. Thorsellia anophelis is the dominant bacterium in a Kenyan population of adult Anopheles gambiae mosquitoes. ISME J. 2, 74–82 (2008).

    CAS  PubMed  Google Scholar 

  • 61.

    Zouache, K. et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol. Ecol. 75, 377–389 (2011).

    CAS  PubMed  Google Scholar 

  • 62.

    Osei-Poku, J., Mbogo, C. M., Palmer, W. J. & Jiggins, F. M. Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol. Ecol. 21, 5138–5150 (2012).

    CAS  PubMed  Google Scholar 

  • 63.

    Duguma, D. et al. Bacterial communities associated with Culex mosquito larvae and two emergent aquatic plants of bioremediation importance. PLoS One 8, 1–11 (2013).

    Google Scholar 

  • 64.

    Lindh, J. M., Borg-Karlson, A. K. & Faye, I. Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water. Acta Trop. 107, 242–250 (2008).

    CAS  PubMed  Google Scholar 

  • 65.

    Moll, R. M., Romoser, W. S., Modrzakowski, M. C., Moncayo, A. C. & Lerdthusnee, K. Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J. Med. Entomol 38, 29–32 (2001).

    CAS  PubMed  Google Scholar 

  • 66.

    Minard, G., Mavingui, P. & Moro, C. Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit. Vectors 6, 146 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 67.

    Pang, X. et al. Mosquito C-type lectins maintain gut microbiome homeostasis. Nat. Microbiol. 1 (2016).

  • 68.

    Andrews, E. S., Crain, P. R., Fu, Y., Howe, D. K. & Dobson, S. L. Reactive oxygen species production and Brugia pahangi survivorship in Aedes polynesiensis with artificial Wolbachia infection types. PLoS Pathog. 8, 1003075 (2012).

    Google Scholar 

  • 69.

    Lozano, R. B. & Pratt, J. R. Interaction of toxicants and communities: The role of nutrients. Environ. Toxicol. Chem. 13, 361–368 (1994).

    CAS  Google Scholar 

  • 70.

    Staley, Z. R., Senkbeil, J. K., Rohr, J. R. & Harwood, V. J. Lack of direct effects of agrochemicals on zoonotic pathogens and fecal indicator bacteria. Appl. Environ. Microbiol. 78, 8146–8150 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 71.

    Jackson, B. T., Paulson, S. L., Youngman, R. R., Scheffel, S. L. & Hawkins, B. Oviposition preferences of Culex restuans and Culex pipiens (Diptera: Culicidae) for selected infusions in oviposition traps and gravid traps. J Am Mosq Control Assoc 21, 360–365 (2005).

    PubMed  Google Scholar 

  • 72.

    Zheng, M. L., Zhang, D. J., Damiens, D. D., Lees, R. S. & Gilles, J. R. L. Standard operating procedures for standardized mass rearing of the dengue and chikungunya vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae) – II – Egg storage and hatching. Parasites and Vectors 8, 348 (2015).

    PubMed  Google Scholar 

  • 73.

    Vogel, A., Jocque, H., Sirot, L. K. & Fiumera, A. C. Effects of atrazine exposure on male reproductive performance in Drosophila melanogaster. J Insect Physiol 72, 14–21 (2015).

    CAS  PubMed  Google Scholar 

  • 74.

    Poupardin, R. et al. Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: Impact on larval tolerance to chemical insecticides. Insect Biochem. Mol. Biol. 38, 540–551 (2008).

    CAS  PubMed  Google Scholar 

  • 75.

    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–72 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 76.

    R core team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2017) doi:ISBN 3-900051-07-0.

  • 77.

    Rstudio Team. RStudio: Integrated development for R. (2016).

  • 78.

    McCune, B. & Mefford, M. J. PC-ORD Multivariate Analysis of Ecological Data. Version 6 User’s Booklet https://doi.org/10.1890/0012-9623(2005)86[6a:MAOEDU]2.0.CO;2 (MjM Software, 2011).

  • 79.

    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).

    CAS  PubMed  Google Scholar 

  • 80.

    Hughes, J. B., Hellmann, J. J., Ricketts, T. H. & Bohannan, B. J. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67, 4399–406 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 81.

    Olszewski, T. D. A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos 104, 377–387 (2004).

    Google Scholar 

  • 82.

    McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 83.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 84.

    Burchett, W. W., Ellis, A. R., Harrar, S. W. & Bathke, A. C. Nonparametric inference for multivariate data: the R package npmv. J. Stat. Softw. 76 (2017).

  • 85.

    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47–e47 (2015).

    PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Competitive ability and plasticity of Wedelia trilobata (L.) under wetland hydrological variations

    A layered approach to safety