in

Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity

  • 1.

    Canadell, J. G. & Raupach, M. R. Managing forests for climate change mitigation. Science 320, 1456–1457 (2008).

    CAS  Google Scholar 

  • 2.

    Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220–226 (2017).

    Google Scholar 

  • 3.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS  Google Scholar 

  • 4.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    CAS  Google Scholar 

  • 5.

    Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).

    CAS  Google Scholar 

  • 6.

    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    CAS  Google Scholar 

  • 7.

    Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).

    CAS  Google Scholar 

  • 8.

    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).

    CAS  Google Scholar 

  • 9.

    Global Forest Resources Assessment (FAO, 2015).

  • 10.

    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).

    Google Scholar 

  • 11.

    Romijn, E. et al. Land restoration in Latin America and the Caribbean: an overview of recent, ongoing and planned restoration initiatives and their potential for climate change mitigation. Forests 10, 510 (2019).

    Google Scholar 

  • 12.

    Bull, G. Q. et al. Industrial forest plantation subsidies: impacts and implications. Policy Econ. 9, 13–31 (2006).

    Google Scholar 

  • 13.

    Whiteman, A. Money doesn’t grow on trees: a perspective on prospects for making forestry pay. Unasylva 54, 3–10 (2003).

    Google Scholar 

  • 14.

    Sedjo, R. A. The role of forest plantations in the world’s future timber supply. For. Chron. 77, 221–225 (2001).

    Google Scholar 

  • 15.

    Rudel, T. K. Tree farms: driving forces and regional patterns in the global expansion of forest plantations. Land Use Policy 26, 545–550 (2009).

    Google Scholar 

  • 16.

    Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104, 18555–18560 (2007).

    CAS  Google Scholar 

  • 17.

    Straaten, Ovan et al. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. Proc. Natl Acad. Sci. USA 112, 9956–9960 (2015).

    Google Scholar 

  • 18.

    Oyarzun, C. E. & Peña, L. Soil erosion and overland flow in forested areas with pine plantations at coastal mountain range, central Chile. Hydrol. Process. 9, 111–118 (1995).

    Google Scholar 

  • 19.

    Stephens, S. S. & Wagner, M. R. Forest plantations and biodiversity: a fresh perspective. J. For. 105, 307–313 (2007).

    Google Scholar 

  • 20.

    Rittenhouse, C. D. & Rissman, A. R. Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs among land-use change scenarios. Environ. Sci. Policy 21, 94–105 (2012).

    Google Scholar 

  • 21.

    Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience 65, 1011–1018 (2015).

    Google Scholar 

  • 22.

    Bond, W. J., Stevens, N., Midgley, G. F. & Lehmann, C. E. R. The trouble with trees: afforestation plans for Africa. Trends Ecol. Evol. 34, 963–965 (2019).

    Google Scholar 

  • 23.

    Heilmayr, R., Echeverría, C., Fuentes, R. & Lambin, E. F. A plantation-dominated forest transition in Chile. Appl. Geogr. 75, 71–82 (2016).

    Google Scholar 

  • 24.

    Hua, F. et al. Tree plantations displacing native forests: the nature and drivers of apparent forest recovery on former croplands in southwestern China from 2000 to 2015. Biol. Conserv. 222, 113–124 (2018).

    Google Scholar 

  • 25.

    Nelson, E. et al. Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape. Proc. Natl Acad. Sci. USA 105, 9471–9476 (2008).

    CAS  Google Scholar 

  • 26.

    Intended Nationally Determined Contribution of Chile Towards the Climate Agreement of Paris 2015 (Gobierno de Chile, 2015); https://go.nature.com/2LZtVa3

  • 27.

    Durán, A. P. & Barbosa, O. Seeing Chile’s forest for the tree plantations. Science 365, 1388–1388 (2019).

    Google Scholar 

  • 28.

    Carrizosa, S. et al. Workshop on the Use of Financial Incentives for Industrial Forest Plantations: Proceedings (Inter-American Development Bank, 1995); https://go.nature.com/36AjlzF

  • 29.

    Haltia, O. & Keipi, K. Financing Forest investments in Latin America: The Issue of Incentives (Inter-American Development Bank, 1997); https://go.nature.com/2B3H7bL

  • 30.

    Hartwig C., F. La Tierra que Recuperamos (Editorial Los Andes, 1994).

  • 31.

    Camus, P. Federico Albert: artífice de la gestión de los bosques de Chile. Rev. Geogr. Norte Gd 30, 55–63 (2003).

    Google Scholar 

  • 32.

    Clapp, R. A. Creating competitive advantage: forest policy as industrial policy in Chile. Econ. Geogr. 71, 273–296 (1995).

    Google Scholar 

  • 33.

    Arnold, F. Sustitución de Bosque Nativo en Chile: destrucción de un valioso patrimonio natural (CODEFF, 1998).

  • 34.

    Torey, S. Entrevista: ‘La solución es mejorar el control, no prohibir el uso del bosque’. Ambiente Desarro 33–35 (1994).

  • 35.

    Pellet, P. F., Ugarte, E., Osorio, E. M. & Herrera, F. D. Conservación de la biodiversidad en Chile, ¿legalmente suficiente?: La necesidad de cartografiar la ley antes de decidir. Rev. Chil. Hist. Nat. 78, 125–141 (2005).

    Google Scholar 

  • 36.

    Informe Consolidado de Sustitucion de Bosque Nativo y Matorral Esclerofilo en el Patrimoniode Arauco (Forestal Arauco, 2012); https://go.nature.com/2M3ndzC

  • 37.

    Farias, A. & Vergara, C. Informe Tecnico de Sustitucion de Bosque Nativo y Matorral Arborescente en el Patrimonio de Forestal Arauco S.A. (WWF, 2013); https://go.nature.com/3d5BWpI

  • 38.

    Gilabert, H., Meza, F., Cabello, H., Aurtenenchea, M. & Laroze, A. Estimación Del Carbono Capturado En Las Plantaciones de Pino Radiata y Eucaliptos Relacionadas Con El DL 701 de 1974 (ODEPA, 2007).

  • 39.

    Niklitschek, M. E. Trade liberalization and land use changes: explaining the expansion of afforested land in Chile. For. Sci. 53, 385–394 (2007).

    Google Scholar 

  • 40.

    Evaluación de Impacto, Informe Final: Programa Bonificación Forestal D.L. 701 (Ministerio de Agricultura & CONAF, 2005).

  • 41.

    Gonzalez, R. Econometric Modeling of Land-use Changes in Southern Chile (Universidad Austral de Chile, 2010).

  • 42.

    Bopp, C., Engler, A., Jara-Rojas, R. & Arriagada, R. Are forest plantation subsidies affecting land use change and off-farm income? A farm-level analysis of Chilean small forest landowners. Land Use Policy 91, 104308 (2019).

  • 43.

    Heilmayr, R. Conservation through intensification? The effects of plantations on natural forests. Ecol. Econ. 105, 204–210 (2014).

    Google Scholar 

  • 44.

    Echeverria, C. et al. Rapid deforestation and fragmentation of Chilean temperate forests. Biol. Conserv. 130, 481–494 (2006).

    Google Scholar 

  • 45.

    Schulz, J. J., Cayuela, L., Echeverria, C., Salas, J. & Benayas, J. M. R. Monitoring land cover change of the dryland forest landscape of central Chile (1975–2008). Appl. Geogr. 30, 436–447 (2010).

    Google Scholar 

  • 46.

    Aguayo, M., Pauchard, A., Azócar, G. & Parra, O. Cambio del uso del suelo en el centro sur de Chile a fines del siglo XX: entendiendo la dinámica espacial y temporal del paisaje. Rev. Chil. Hist. Nat. 82, 361–374 (2009).

    Google Scholar 

  • 47.

    Miranda, A., Altamirano, A., Cayuela, L., Lara, A. & González, M. Native forest loss in the Chilean biodiversity hotspot: revealing the evidence. Reg. Environ. Change 17, 285–297 (2017).

    Google Scholar 

  • 48.

    Nahuelhual, L., Carmona, A., Lara, A., Echeverría, C. & González, M. E. Land-cover change to forest plantations: proximate causes and implications for the landscape in south-central Chile. Landsc. Urban Plan. 107, 12–20 (2012).

    Google Scholar 

  • 49.

    Holt, T. V., Binford, M. W., Portier, K. M. & Vergara, R. A stand of trees does not a forest make: tree plantations and forest transitions. Land Use Policy 56, 147–157 (2016).

    Google Scholar 

  • 50.

    Lubowski, R. N. Determinants of Land-Use Transitions in the United States: Econometric Analysis of Changes among the Major Land-Use Categories (Harvard Univ., 2002).

  • 51.

    Lawler, J. J. et al. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl Acad. Sci. USA 111, 7492–7497 (2014).

    CAS  Google Scholar 

  • 52.

    Marlier, M. E. et al. Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia. Environ. Res. Lett. 10, 085005 (2015).

    Google Scholar 

  • 53.

    Adams, V. M., Barnes, M. & Pressey, R. L. Shortfalls in conservation evidence: moving from ecological effects of interventions to policy evaluation. One Earth 1, 62–75 (2019).

    Google Scholar 

  • 54.

    Tasser, E., Sternbach, E. & Tappeiner, U. Biodiversity indicators for sustainability monitoring at municipality level: an example of implementation in an alpine region. Ecol. Indic. 8, 204–223 (2008).

    Google Scholar 

  • 55.

    Zimmermann, P., Tasser, E., Leitinger, G. & Tappeiner, U. Effects of land-use and land-cover pattern on landscape-scale biodiversity in the European Alps. Agric. Ecosyst. Environ. 139, 13–22 (2010).

    Google Scholar 

  • 56.

    Noh, J., Echeverría, C., Pauchard, A. & Cuenca, P. Extinction debt in a biodiversity hotspot: the case of the Chilean winter rainfall-Valdivian forests. Landsc. Ecol. Eng. 15, 1–12 (2019).

    Google Scholar 

  • 57.

    D.L. 701: Bonificaciones Forestales (CONAF, 2014); https://go.nature.com/2TDIMeD

  • 58.

    Jack, B. K. & Jayachandran, S. Self-selection into payments for ecosystem services programs. Proc. Natl Acad. Sci. USA 116, 5326–5333 (2019).

    CAS  Google Scholar 

  • 59.

    ArcGIS Desktop: Release 10 (Environmental Systems Research Institute, 2011).

  • 60.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  • 61.

    Stata Statistical Software: Release 14 (StataCorp, 2015).

  • 62.

    Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).

  • 63.

    Anuario Forestal (INFOR, 2018).

  • 64.

    Stavins, R. N. & Jaffe, A. B. Unintended Impacts of public investments on private decisions: the depletion of forested. Wetl. Am. Econ. Rev. 80, 337–352 (1990).

    Google Scholar 

  • 65.

    Chomitz, K. M. & Gray, D. A. Roads, land use, and deforestation: a spatial model applied to Belize. World Bank Econ. Rev. 10, 487–512 (1996).

    Google Scholar 

  • 66.

    Lubowski, R. N., Plantinga, A. J. & Stavins, R. N. What drives land-use change in the United States? A national analysis of landowner decisions. Land Econ. 84, 529–550 (2008).

    Google Scholar 

  • 67.

    McFadden, D. The measurement of urban travel demand. J. Public Econ. 3, 303–328 (1974).

    Google Scholar 

  • 68.

    Estudio Agrológico de Suelos (CIREN, 2015).

  • 69.

    Paillet, Y. et al. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv. Biol. 24, 101–112 (2010).

    Google Scholar 

  • 70.

    Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).

    Google Scholar 

  • 71.

    Sodhi, N. S., Lee, T. M., Koh, L. P. & Brook, B. W. A meta-analysis of the impact of anthropogenic forest disturbance on Southeast Asia’s biotas. Biotropica 41, 103–109 (2009).

    Google Scholar 

  • 72.

    Garrett, R. D., Lambin, E. F. & Naylor, R. L. The new economic geography of land use change: supply chain configurations and land use in the Brazilian Amazon. Land Use Policy 34, 265–275 (2013).

    Google Scholar 

  • 73.

    Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl Acad. Sci. USA 105, 16089 (2008).

    CAS  Google Scholar 

  • 74.

    Blackman, A. Evaluating forest conservation policies in developing countries using remote sensing data: an introduction and practical guide. Policy Econ. 34, 1–16 (2013).

    Google Scholar 

  • 75.

    Heilmayr, R. & Lambin, E. F. Impacts of nonstate, market-driven governance on Chilean forests. Proc. Natl Acad. Sci. USA 113, 2910–2915 (2016).

    CAS  Google Scholar 

  • 76.

    Lubowski, R. N., Plantinga, A. J. & Stavins, R. N. Land-use change and carbon sinks: econometric estimation of the carbon sequestration supply function. J. Environ. Econ. Manag. 51, 135–152 (2006).

    Google Scholar 

  • 77.

    Marlier, M. E. et al. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan. Environ. Res. Lett. 10, 054010 (2015).

    Google Scholar 

  • 78.

    Hennekens, S. M. & Schaminée, J. H. J. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12, 589–591 (2001).

    Google Scholar 


  • Source: Ecology - nature.com

    Dimorphic flowers modify the visitation order of pollinators from male to female flowers

    Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation