in

Predatory functional responses under increasing temperatures of two life stages of an invasive gecko

  • 1.

    Hellmann, J. J., Byers, J. E., Bierwagen, B. G. & Dukes, J. S. Five potential consequences of climate change for invasive species. Cons. bio. 22, 534–543, https://doi.org/10.1111/j.1523-1739.2008.00951.x (2008).

    Article  Google Scholar 

  • 2.

    Meyerson, L. A., Carlton, J. T., Simberloff, D. & Lodge, D. M. The growing peril of biological invasions. Front Ecol Environ. 17, 191–191, https://doi.org/10.1002/fee.2036 (2019).

    Article  Google Scholar 

  • 3.

    Rahel, F. J., Bierwagen, B. & Taniguchi, Y. Managing aquatic species of conservation concern in the face of climate change and invasive species. Cons Bio. 22, 551–561 (2008).

    Article  Google Scholar 

  • 4.

    Mooney, H. A. & Cleland, E. E. The evolutionary impact of invasive species. P Natl Acad Sci USA 98, 5446–5451, https://doi.org/10.1073/pnas.091093398 (2001).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Rahel, F. J. & Olden, J. D. (2008). Assessing the effects of climate change on aquatic invasive species. Cons Bio. 22, 521–533,https://doi.org/10.1111/j.1523-1739.2008.00950.x (2001).

  • 6.

    Laverty, C. et al. Temperature rise and parasitic infection interact to increase the impact of an invasive species. INT J Parasitol. 47, 291–296 (2017).

    Article  Google Scholar 

  • 7.

    Dick, J. et al. Invader Relative Impact Potential: a new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species. J Appl Ecol. 54, 1259–1267 (2017).

    Article  Google Scholar 

  • 8.

    Englund, G., Öhlund, G., Hein, C. L. & Diehl, S. Temperature dependence of the functional response. Ecol. Lett. 14, 914–921 (2011).

    Article  Google Scholar 

  • 9.

    Khosa, D. et al. Temperature regime drives differential predatory performance in Largemouth Bass and Florida Bass. Environ. Biol. Fishes. 103, 67–76 (2020).

    Article  Google Scholar 

  • 10.

    Human, K. G. & Gordon, D. M. Exploitation and interference competition between the invasive Argentine ant, Linepithema humile, and native ant species. Oecologia. 105, 405–412, https://doi.org/10.1007/BF00328744 (1996).

    ADS  Article  PubMed  Google Scholar 

  • 11.

    Holway et al. The causes and consequences of ant invasions. Annu Rev Ecol Evol. 33, 181–233, https://doi.org/10.1146/annurev.ecolsys.33.010802.150444 (2002).

    Article  Google Scholar 

  • 12.

    Cioni, A. & Gherardi, F. Agonism and interference competition in freshwater decapods. Behaviour 141, 1297–1324, https://doi.org/10.1163/1568539042729702 (2004).

    Article  Google Scholar 

  • 13.

    Gherardi, F. & Daniels, W. H. Agonism and shelter competition between invasive and indigenous crayfish species. Can. J. Zool. 82, 1923–1932, https://doi.org/10.1139/z04-185 (2004).

    Article  Google Scholar 

  • 14.

    Case, T. J. & Gilpin, M. E. Interference competition and niche theory. P Natl Acad Sci USA 71, 3073–3077, https://doi.org/10.1073/pnas.71.8.3073 (1974).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Langkilde, T. & Shine, R. Competing for crevices: interspecific conflict influences retreat-site selection in montane lizards. Oecologia 140, 684–691, https://doi.org/10.1007/s00442-004-1640-1 (2004).

    ADS  Article  PubMed  Google Scholar 

  • 16.

    Rowles, A. D. & O’Dowd, D. J. Interference competition by Argentine ants displaces native ants: implications for biotic resistance to invasion. Biol. Invasions 9, 73–85, https://doi.org/10.1007/s10530-006-9009-5 (2007).

    Article  Google Scholar 

  • 17.

    Corlett, R. T. Impacts of warming on tropical lowland rainforests. Trends Ecol Evol. 26, 606–613, https://doi.org/10.1016/j.tree.2011.06.015 (2011).

    Article  PubMed  Google Scholar 

  • 18.

    Barrios‐O’Neill, D. et al. Predator‐free space, functional responses and biological invasions. Funct. Ecol. 29, 377–384, https://doi.org/10.1111/1365-2435.12347 (2015).

    Article  Google Scholar 

  • 19.

    Sih, A., Englund, G. & Wooster, D. Emergent impacts of multiple predators on prey. Trends Ecol Evol. 13, 350–355, https://doi.org/10.1016/S0169-5347(98)01437-2 (1998).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    Finke, D. L. & Snyder, W. E. Conserving the benefits of predator biodiversity. Biol. Conserv. 143, 2260–2269, https://doi.org/10.1016/j.biocon.2010.03.022 (2010).

    Article  Google Scholar 

  • 21.

    Griffin, J. N. & Silliman, B. R. Resource partitioning and why it matters. Nature Education Knowledge 3, 49 (2011).

    Google Scholar 

  • 22.

    Andrews, R. M. & Pough, F. H. Metabolism of squamate reptiles: allometric and ecological relationships. Physiological Zoology 58, 214–231 (1985).

    Article  Google Scholar 

  • 23.

    Kraus, F. Alien reptiles and amphibians: a scientific compendium and analysis (Vol. 4). Springer, Netherlands, p. 562 (2009).

  • 24.

    Gibbons, J. W. et al. The global decline of reptiles, déjà vu amphibians. BioScience 50, 653–666, https://doi.org/10.1641/0006-3568(2000)050[0653:TGDORD]2.0.CO;2 (2000).

    Article  Google Scholar 

  • 25.

    Kraus, F. Impacts from invasive reptiles and amphibians. Annu Rev Ecol Evol S. 46, 75–97, https://doi.org/10.1146/annurev-ecolsys-112414-054450 (2015).

    Article  Google Scholar 

  • 26.

    Bomford, M., Kraus, F., Braysher, M., Walter, L. & Brown, L. Risk assessment model for the import and keeping of exotic reptiles and amphibians. Canberra: Bureau of Rural Sciences for The Department of Environment and Heritage, p. 110, Available at, http://www.brs.gov.au (Accessed: 17 September 2019).

  • 27.

    Kopecký, O., Kalous, L. & Patoka, J. (2013). Establishment risk from pet trade freshwater turtles in the European Union. KNOWL MANAG AQUAT EC. 410, p. 11; https://doi.org/10.1051/kmae/2013057 (2005).

  • 28.

    Kopecký, O., Patoka, J. & Kalous, L. Establishment risk and potential invasiveness of the selected exotic amphibians from pet trade in the European Union. J. Nat. Conserv. 31, 22–28, https://doi.org/10.1016/j.jnc.2016.02.007 (2016).

    Article  Google Scholar 

  • 29.

    Van Wilgen, N. J. & Richardson, D. M. The roles of climate, phylogenetic relatedness, introduction effort, and reproductive traits in the establishment of non‐native reptiles and amphibians. Cons Bio. 26, 267–277, https://doi.org/10.1111/j.1523-1739.2011.01804.x (2012).

    Article  Google Scholar 

  • 30.

    Popescu, V. D., Rozylowicz, L., Cogălniceanu, D., Niculae, I. M. & Cucu, A. L. Moving into protected areas? Setting conservation priorities for Romanian reptiles and amphibians at risk from climate change. PLoS ONE 8, 1–14, https://doi.org/10.1371/journal.pone.0079330 (2013).

    CAS  Article  Google Scholar 

  • 31.

    Fitzsimons, J. Southward range expansion of the Mourning Gecko Lepidodactylus lugubris on mainland Australia and nearshore islands. Aust. J. Zool. 35, 619–621, https://doi.org/10.7882/AZ.2011.013 (2011).

    Article  Google Scholar 

  • 32.

    Hoogmoed, M. S. & Avila-Pires, T. C. Lepidodactylus lugubris (Duméril & Bibron 1836) (Reptilia: Gekkonidae), an introduced lizard new for Brazil, with remarks on and correction of its distribution in the New World. Zootaxa 4000, 90–110, https://doi.org/10.11646/zootaxa.4000.1.4 (2015).

    Article  PubMed  Google Scholar 

  • 33.

    Griffing, A. H., Sanger, T. J., Matamoros, I. C., Nielsen, S. V. & Gamble, T. Protocols for husbandry and embryo collection of a parthenogenetic gecko, Lepidodactylus lugubris (Squamata: Gekkonidae). Herpetol. Rev. 49, 230–235 (2018).

    Google Scholar 

  • 34.

    Seufer, H. G Artenbeschreibung und Haltung, Pflege und Zucht der bekanntesten Gecko-Arten. Albrecht Philler Verlag, Minden, pp. 112 (1985).

  • 35.

    Nietzke, G. Die Terrarientiere 2. Ulmer, Germany, p. 322 (1998).

  • 36.

    Werner, Y. L. Do gravid females of oviparous gekkonid lizards maintain elevated body temperatures? Hemidactylus frenatus and Lepidodactylus lugubris on Oahu. Amphibia-Reptilia 11, 200–204, https://doi.org/10.1163/156853890X00627 (1990).

    Article  Google Scholar 

  • 37.

    Bolger, D. T. & Case, T. J. Divergent ecology of sympatric clones of the asexual gecko, Lepidodactylus lugubris. Oecologia 100, 397–405, https://doi.org/10.1007/BF00317861 (1994).

    ADS  Article  PubMed  Google Scholar 

  • 38.

    Huey, R. B., Niewiarowski, P. H., Kaufmann, J. & Herron, J. C. Thermal biology of nocturnal ectotherms: is sprint performance of geckos maximal at low body temperatures?. Physiol. Zool. 62, 488–504, https://www.journals.uchicago.edu/doi/abs/10.1086/physzool.62.2.30156181 (1989).

  • 39.

    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F. et al. (eds.)] Cambridge University Press, Cambridge, United Kingdom and New York, USA, 1535 pp (2013).

  • 40.

    Nowak, E. M., Theimer, T. C. & Schuett, G. W. Functional and numerical responses of predators: where do vipers fit in the traditional paradigms? BIOL REV. 83, 601–620 (2008).

    Article  Google Scholar 

  • 41.

    Holling, C. S. Some characteristics of simple types of predation and parasitism. Can Entomol. 91, 385–398 (1959).

    Article  Google Scholar 

  • 42.

    Hassell, M. P. The dynamics of arthropod predator-prey systems. Princeton University Press (1978).

  • 43.

    Dick, J. T. et al. Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol. Invasions. 16, 735–753, https://doi.org/10.1007/s10530-013-0550-8 (2014).

    Article  Google Scholar 

  • 44.

    Bollache, L., Dick, J. T., Farnsworth, K. D. & Montgomery, W. I. Comparison of the functional responses of invasive and native amphipods. Biol. Lett. 4, 166–169, https://doi.org/10.1098/rsbl.2007.0554 (2007).

    Article  PubMed Central  Google Scholar 

  • 45.

    Dick, J. T. et al. Ecological impacts of an invasive predator explained and predicted by comparative functional responses. Biol. Invasions 15, 837–846, https://doi.org/10.1007/s10530-012-0332-8 (2013).

    Article  Google Scholar 

  • 46.

    South, J., Dick, J. T., McCard, M., Barrios-O’Neill, D. & Anton, A. Predicting predatory impact of juvenile invasive lionfish (Pterois volitans) on a crustacean prey using functional response analysis: effects of temperature, habitat complexity and light regimes. Environ. Biol. Fishes. 100, 1155–1165, https://doi.org/10.1007/s10641-017-0633-y (2017).

    Article  Google Scholar 

  • 47.

    Huang, X. et al. Diets structure of a common lizard Eremias argus and their effects on grasshoppers: Implications for a potential biological agent. J Asia-Pacentomol. 19, 133–138, https://doi.org/10.1016/j.aspen.2015.12.013 (2016).

    Article  Google Scholar 

  • 48.

    Witz, B. W. The functional response of Cnemidophorus sexlineatus: laboratory versus field measurements. J. Herpetol. 18, 498–506, https://doi.org/10.2307/1565692 (1996).

    Article  Google Scholar 

  • 49.

    Rödder, D., Solé, M. & Böhme, W. Predicting the potential distributions of two alien invasive House geckos (Gekkonidae: Hemidactylus frenatus, Hemidactylus mabouia). North-West J Zool. 4, 236–246 (2008).

    Google Scholar 

  • 50.

    Rödder, D. & Weinsheimer, F. Will future anthropogenic climate change increase the potential distribution of the alien invasive Cuban treefrog (Anura: Hylidae)? J. Nat. Hist. 43, 1207–1217, https://doi.org/10.1080/00222930902783752 (2009).

    Article  Google Scholar 

  • 51.

    Brown, S. G. & Duffy, P. K. The effects of egg-laying site, temperature, and salt water on incubation time and hatching success in the gecko Lepidodactylus lugubris. J. Herpetol. 26, 510–513, https://doi.org/10.2307/1565135 (1992).

    Article  Google Scholar 

  • 52.

    Dangles, O., Carpio, C., Barragan, A. R., Zeddam, J. L. & Silvain, J. F. Temperature as a key driver of ecological sorting among invasive pest species in the tropical Andes. ECOL APPL. 18, 1795–1809, https://doi.org/10.1890/07-1638.1 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Cuthbert, R. N., Dickey, J. W., Coughlan, N. E., Joyce, P. W., & Dick, J. T. The Functional Response Ratio (FRR): advancing comparative metrics for predicting the ecological impacts of invasive alien species. Biol. Invasions 1–5 (2019).

  • 54.

    Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Philos T R Soc B. 367, 2923–2934 (2012).

    Article  Google Scholar 

  • 55.

    Artacho, P., Jouanneau, I. & Le Galliard, J. F. Interindividual variation in thermal sensitivity of maximal sprint speed, thermal behavior, and resting metabolic rate in a lizard. Physiol Biochem Zool. 86, 458–469 (2013).

    Article  Google Scholar 

  • 56.

    Dick, J. T. et al. Functional responses can unify invasion ecology. Biol. invasions 19, 1667–1672, https://doi.org/10.1007/s10530-016-1355-3 (2017).

    Article  Google Scholar 

  • 57.

    Veselý, L. et al. Temperature and prey density jointly influence trophic and non‐trophic interactions in multiple predator communities. Freshw. Biol. 00, 1–10, https://doi.org/10.1111/fwb.13387 (2019).

    Article  Google Scholar 

  • 58.

    Dickey, J. W. E. et al. On the RIP: using Relative Impact Potential to assess the ecological impacts of invasive alien species. NeoBiota 55, 27–60 (2020).

    Article  Google Scholar 

  • 59.

    Perry, G. & Ritter, M. Lepidodactylus lugubris (mourning gecko): nectivory and daytime activity. Herpetol. Rev. 30, 166–167 (1999).

    Google Scholar 

  • 60.

    Ineich, I. & Ota, H. Additional remarks on the unisexual-bisexual complex of the gecko, Lepidodactylus lugubris, in Takapoto Atoll, French Polynesia. Bulletin of the College of Science 53, 31–39, http://hdl.handle.net/20.500.12000/5439 (1992).

  • 61.

    Grismer, L. L. Lizards of Peninsular Malaysia, Singapore, and their adjacent archipelagos. Edition Chimaira, Frankfurt am Main, Germany, p. 728 (2011)

  • 62.

    Salvidio, S. & Delaugerre, M. Population dynamics of the European leaf-toed gecko (Euleptes europaea) in NW Italy: implications for conservation. HERPETOL J. 13, 81–88 (2003).

    Google Scholar 

  • 63.

    Short, K. H. & Petren, K. Boldness underlies foraging success of invasive Lepidodactylus lugubris geckos in the human landscape. Anim. Behav. 76, 429–437, https://doi.org/10.1016/j.anbehav.2008.04.008 (2008).

    Article  Google Scholar 

  • 64.

    Manthey, U. & Grossmann, W. Amphibien & Reptilien Südostasiens. Natur und Tier-Verlag, Münster, Germany, p. 512 (1997)

  • 65.

    Röll, B. Lepidodactylus lugubris (Duméril & Bibron). Sauria 24, 545–550 (2002).

    Google Scholar 

  • 66.

    Bomford, M., Kraus, F., Barry, S. C. & Lawrence, E. Predicting establishment success for exogenous reptiles and amphibians: a role for climate matching. Biol. Invasions 11, 713–724, https://doi.org/10.1007/s10530-008-9285-3 (2009).

    Article  Google Scholar 

  • 67.

    Linzmaier, S. M., & Jeschke, J. M. Towards a mechanistic understanding of individual‐level functional responses: Invasive crayfish as model organisms. Freshw. Biology 65, https://doi.org/10.1111/fwb.13456 (2019).

  • 68.

    Petren, K. & Case, T. J. An experimental demonstration of exploitation competition in an ongoing invasion. Ecology 77, 118–132, https://doi.org/10.2307/2265661 (1996).

    Article  Google Scholar 

  • 69.

    Ota, H. Female reproductive cycles in the northernmost populations of the two gekkonid lizards, Hemidactylus frenatus and Lepidodactylus lugubris. Ecol. Res. 9, 121–130, https://doi.org/10.1007/BF02347487 (1994).

    Article  Google Scholar 

  • 70.

    Boissinot, S., Ineich, I., Thaler, L. & Guillaume, C. P. Hybrid origin and clonal diversity in the parthenogenetic gecko, Lepidodactylus lugubris in French Polynesia. J. Herpetol. 295–298, https://doi.org/10.2307/1565401 (1997).

  • 71.

    Hanley, K. A., Bolger, D. T. & Case, T. J. Comparative ecology of sexual and asexual gecko species (Lepidodactylus) in French Polynesia. EVOL ECOL RES. 8, 438–454 (1994).

    Article  Google Scholar 

  • 72.

    Yamashiro, S., Toda, M. & Ota, H. Clonal composition of the parthenogenetic gecko, Lepidodactylus lugubris, at the northernmost extremity of its range. ZOOL SCI. 17, 1013–1020, https://doi.org/10.2108/zsj.17.1013 (2000).

    Article  Google Scholar 

  • 73.

    Rösler, H. G der Welt. Alle Gattungen. Urania, Leipzig, 236 pp (1995).

  • 74.

    Umeya, K. & Kato, T. Studies on the comparative ecology of bean weevils V. distribution of eggs and larvae of Acanthoscelides obtectus in relation to its oviposition and boring behaviour. POPUL ECOL. 12, 35–50, https://doi.org/10.1007/BF02511080 (1970).

    Article  Google Scholar 

  • 75.

    Thakur, D. R. Taxonomy, distribution and pest status of Indian biotypes of Acanthoscelides obtectus (Coleoptera: Chrysomelidae: Bruchinae) – A new record. PAK J ZOOL. 44, 189–195 (2012).

    Google Scholar 

  • 76.

    Leroi, B. Feeding, longevity and reproduction of adults of Acanthoscelides obtectus Say in laboratory conditions. In: The ecology of Bruchids attacking legumes (Pulses). Springer, Dordrecht, pp. 101–111 (1981).

  • 77.

    Messenger, K. Behaviour of Lepidodactylus lugubris on Heron Island, Great Barrier Reef, and a record of Gehyra dubia from that island. Herpetofauna 35, 37–39 (2005).

    Google Scholar 

  • 78.

    Limpus, C. J., Limpus, D. J. & Goldizen, A. Recent colonisation of Heron Island, southern Great Barrier Reef, by the mourning gecko, Lepidodactylus lugubris. Memoirs of the Queensland Museum, 43, 777–781, https://trove.nla.gov.au/version/234176520 (1999).

  • 79.

    Alexander, M. E., Dick, J. T., Weyl, O. L., Robinson, T. B., & Richardson, D. M. Existing and emerging high impact invasive species are characterized by higher functional responses than natives. Biol. Lett. 10, https://doi.org/10.1098/rsbl.2013.0946 (2014).

  • 80.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. Springer, New York, USA, p. 574 (2009).

  • 81.

    Juliano, S. A. Non-linear curve fitting: predation and functional response curve. Design and analysis of ecological experiment, 178–196 (2001).

  • 82.

    Rogers, D. Random search and insect population models. J Anim Ecol. 41, 369–83, https://doi.org/10.2307/3474 (1972).

    Article  Google Scholar 

  • 83.

    Rosenbaum, B. & Rall, B. C. Fitting functional responses: Direct parameter estimation by simulating differential equations. Methods Ecol. Evol. 9, 2076–2090 (2018).

    Article  Google Scholar 

  • 84.

    Bolker, B. M. Ecological Models and Data in R. Princeton University Press, Princeton, USA and Oxford, United Kingdom, pp 408 (2008).

  • 85.

    Bolker, B. M. emdbook: Ecological Models and Data in R; R package version 1.3.11 (2019).


  • Source: Ecology - nature.com

    Dimorphic flowers modify the visitation order of pollinators from male to female flowers

    Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation