in

Wheat growth, applied water use efficiency and flag leaf metabolome under continuous and pulsed deficit irrigation

  • 1.

    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R. K. and Meyer, L. A. (eds.)]. IPCC, Geneva, Switzerland (2014).

  • 2.

    Rockström, J. et al. Managing water in rainfed agriculture. In Molden D, ed. Water for food, water for life: a comprehensive assessment of water management in agriculture. Earthscan, London and International Water Management Institute (IWMI), Colombo, 315–352 (2007).

  • 3.

    Meng, L.-L., Song, J.-F., Wen, J., Zhang, J. & Wei, J.-H. Effects of drought stress on fluorescence characteristics of photosystem II in leaves of Plectranthus scutellarioides. Photosynthetica 54, 414–421 (2016).

    CAS  Google Scholar 

  • 4.

    Ullah, N., Yüce, M., Gökçe, Z. N. Ö. & Budak, H. Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species. BMC Genomics 18, 969 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 5.

    Boyle, R. K. A., McAinsh, M. & Dodd, I. C. Daily irrigation attenuates xylem abscisic acid concentration and increases leaf water potential of Pelargonium x hortorum compared with infrequent irrigation. Physiol. Plant. 158, 23–33 (2016).

    CAS  PubMed  Google Scholar 

  • 6.

    Kleine, S. & Müller, C. Drought stress and leaf herbivory affect root terpenoid concentrations and growth of Tanacetum vulgare. J. Chem. Ecol. 40, 1115–1125 (2014).

    CAS  PubMed  Google Scholar 

  • 7.

    Jamieson, P. D., Martin, R. J. & Francis, G. S. Drought influences on grain yield of barley, wheat, and maize. New Zeal. J. Crop. Hort. Sci. 23, 55–66 (1995).

    Google Scholar 

  • 8.

    Chaves, M. M., Maroco, J. P. & Pereira, J. S. Understanding plant responses to drought – from genes to the whole plant. Funct. Plant. Biol. 30, 239–264 (2003).

    CAS  Google Scholar 

  • 9.

    Fàbregas, N. & Fernie, A. R. The metabolic response to drought. J. Exp. Bot. 70, 1077–1085 (2019).

    PubMed  Google Scholar 

  • 10.

    Singh, M., Kumar, J., Singh, S., Singh, V. P. & Prasad, S. M. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev. Environ. Sci.Bio/Technol. 14, 407–426 (2015).

    CAS  Google Scholar 

  • 11.

    Catola, S. et al. Physiological and metabolomic analysis of Punica granatum (L.) under drought stress. Planta 243, 441–449 (2016).

    CAS  PubMed  Google Scholar 

  • 12.

    Hayat, S. et al. Role of proline under changing environments. Plant Signal. Behav. 7, 1456–1466 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Obata, T. et al. Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol. 169, 2665–2683 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Templer, S. E. et al. Metabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense. J. Exp. Bot. 68, 1697–1713 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Briske, D. D. & Camp, B. J. Water stress increases alkaloid concentrations in threadleaf groundsel (Senecio longilobus). Weed Sci. 30, 106–108 (1982).

    Google Scholar 

  • 16.

    Marchese, J. A., Ferreira, J. F. S., Rehder, V. L. G. & Rodrigues, O. Water deficit effect on the accumulation of biomass and artemisinin in annual wormwood (Artemisia annua L., Asteraceae). Braz. J. Plant Physiol. 22, 1–9 (2010).

    Google Scholar 

  • 17.

    Gutbrodt, B., Mody, K. & Dorn, S. Drought changes plant chemistry and causes contrasting responses in lepidopteran herbivores. Oikos 120, 1732–1740 (2011).

    CAS  Google Scholar 

  • 18.

    MacAllister, S. et al. Drought-induced mortality in Scots pine: opening the metabolic black box. Tree Physiol. 39, 1358–1370 (2019).

    PubMed  Google Scholar 

  • 19.

    Sun, C., Gao, X., Fu, J., Zhou, J. & Wu, X. Metabolic response of maize (Zea mays L.) plants to combined drought and salt stress. Plant Soil 388, 99–117 (2015).

    CAS  Google Scholar 

  • 20.

    Peters, K. et al. Current challenges in plant eco-metabolomics. Int. J. Mol. Sci. 19, 1385, https://doi.org/10.3390/ijms19051385 (2018).

    CAS  Article  PubMed Central  Google Scholar 

  • 21.

    Sutter, R. & Müller, C. Mining for treatment-specific and general changes in target compounds and metabolic fingerprints in response to herbivory and phytohormones in Plantago lanceolata. New Phytol. 191, 1069–1082 (2011).

    CAS  PubMed  Google Scholar 

  • 22.

    Ray, D. K., Mueller, N. D., West, P. C. & Foley, J. A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8, e66428, https://doi.org/10.1371/journal.pone.0066428 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    del Pozo, A. et al. Physiological traits associated with wheat yield potential and performance under water-stress in a Mediterranean environment. Front. Plant Sci. 7, 987, https://doi.org/10.3389/fpls.2016.00987 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Michaletti, A., Naghavi, M. R., Toorchi, M., Zolla, L. & Rinalducci, S. Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci. Rep. 8, 5710, https://doi.org/10.1038/s41598-018-24012-y (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 25.

    Cambier, V., Hance, T. & De Hoffmann, E. Effects of 1,4-benzoxazin-3-one derivatives from maize on survival and fecundity of Metopolophium dirhodum (Walker) on artificial diet. J. Chem. Ecol. 27, 359–370 (2001).

    CAS  PubMed  Google Scholar 

  • 26.

    Pérez, F. J. Allelopathic effect of hydroxamic acids from cereals on Avena sativa and A. fatua. Phytochemistry 29, 773–776 (1990).

    Google Scholar 

  • 27.

    Maag, D., Erb, M., Köllner, T. G. & Gershenzon, J. Defensive weapons and defense signals in plants: some metabolites serve both roles. BioEssays 37, 167–174 (2015).

    PubMed  Google Scholar 

  • 28.

    Silva, H., Copaja, S. V., Bravo, H. R. & Argandoña, V. H. Relationship between grain yield, osmotic adjustment and benzoxazinone content in Triticum aestivum L. cultivars. Z. Naturforsch. C61, 704–708 (2006).

    Google Scholar 

  • 29.

    Doppler, M. et al. Stable isotope-assisted plant metabolomics: investigation of phenylalanine-related metabolic response in wheat upon treatment with the Fusarium virulence factor deoxynivalenol. Front. Plant Sci. 10, 1137, https://doi.org/10.3389/fpls.2019.01137 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Nakabayashi, R. et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J. 77, 367–379 (2014).

    CAS  PubMed  Google Scholar 

  • 31.

    Zhang, Y. et al. UPLC-QTOF analysis reveals metabolomic changes in the flag leaf of wheat (Triticum aestivum L.) under low-nitrogen stress. Plant Physiol. Bioch. 111, 30–38 (2017).

    CAS  Google Scholar 

  • 32.

    Olenichenko, N. A., Ossipov, V. I. & Zagoskina, N. V. Effect of cold hardening on the phenolic complex of winter wheat leaves. Russ. J. Plant Physiol. 53, 495–500 (2006).

    CAS  Google Scholar 

  • 33.

    Souza, R. P., Machado, E. C., Silva, J. A. B., Lagôa, A. M. M. A. & Silveira, J. A. G. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ. Exp. Bot. 51, 45–56 (2004).

    CAS  Google Scholar 

  • 34.

    Ashoub, A., Beckhaus, T., Berberich, T., Karas, M. & Brüggemann, W. Comparative analysis of barley leaf proteome as affected by drought stress. Planta 237, 771–781 (2013).

    CAS  PubMed  Google Scholar 

  • 35.

    Hamzei, J. & Soltani, J. Deficit irrigation of rapeseed for water-saving: Effects on biomass accumulation, light interception and radiation use efficiency under different N rates. Agr. Ecosyst. Environ. 155, 153–160 (2012).

    Google Scholar 

  • 36.

    Socias, X., Correia, M. J., Chaves, M. & Medrano, H. The role of abscisic acid and water relations in drought responses of subterranean clover. J. Exp. Bot. 48, 1281–1288 (1997).

    CAS  Google Scholar 

  • 37.

    da Silva, E. C., Nogueira, R. J. M. C., da Silva, M. A. & de Albuquerque, M. B. Drought stress and plant nutrition. Plant Stress 5, 32–41 (2011).

    Google Scholar 

  • 38.

    Boyle, R. K. A., McAinsh, M. & Dodd, I. C. Stomatal closure of Pelargonium x hortorum in response to soil water deficit is associated with decreased leaf water potential only under rapid soil drying. Physiol. Plant. 156, 84–96 (2016).

    CAS  PubMed  Google Scholar 

  • 39.

    Saab, I. N., Sharp, R. E., Pritchard, J. & Voetberg, G. S. Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol. 93, 1329–1336 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Franco, J. A., Bañón, S., Vicente, M. J., Miralles, J. & Martínez-Sánchez, J. J. Root development in horticultural plants grown under abiotic stress conditions – a review. J. Hortic. Sci. Biotech. 86, 543–556 (2011).

    Google Scholar 

  • 41.

    Fry, E. L., Evans, A. L., Sturrock, C. J., Bullock, J. M. & Bardgett, R. D. Root architecture governs plasticity in response to drought. Plant Soil 433, 189–200 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Inoue, M., Irshad, M. & Ahmed, B. A. O. Interrelation of irrigation frequency and manuring on the growth and water use efficiency of wheat under arid conditions. J. Food Agric. Environ. 6, 290–294 (2008).

    Google Scholar 

  • 43.

    Bian, C. et al. Responses of winter wheat yield and water use efficiency to irrigation frequency and planting pattern. PLoS ONE 11, e0154673, https://doi.org/10.1371/journal.pone.0154673 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 44.

    Shao, L., Zhang, X., Chen, S., Sun, H. & Wang, Z. Effects of irrigation frequency under limited irrigation on root water uptake, yield and water use efficiency of winter wheat. Irrig. Drain. 58, 393–405 (2009).

    Google Scholar 

  • 45.

    Padilla, F. M. et al. Root plasticity maintains growth of temperate grassland species under pulsed water supply. Plant Soil 369, 377–386 (2013).

    CAS  Google Scholar 

  • 46.

    Wang, L., Wang, S., Chen, W., Li, H. & Deng, X. Physiological mechanisms contributing to increased water-use efficiency in winter wheat under organic fertilization. PLoS ONE 12, e0180205, https://doi.org/10.1371/journal.pone.0180205 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 47.

    Stallmann, J., Schweiger, R. & Müller, C. Effects of continuous versus pulsed drought stress on physiology and growth of wheat. Plant Biol. 20, 1005–1013 (2018).

    CAS  PubMed  Google Scholar 

  • 48.

    Noctor, G. & Foyer, C. H. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 249–279 (1998).

    CAS  PubMed  Google Scholar 

  • 49.

    Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410 (2002).

  • 50.

    Zhang, J., Jiang, H., Song, X., Jin, J. & Zhang, X. The responses of plant leaf CO2/H2O exchange and water use efficiency to drought: a meta-analysis. Sustainability 10, 551 (2018).

    Google Scholar 

  • 51.

    Rouphael, Y., Cardarelli, M., Schwarz, D., Franken, P. & Colla, G. Effects of drought on nutrient uptake and assimilation in vegetable crops. In Aroca R, ed. Plant responses to drought stress. Springer-Verlag, Berlin, Heidelberg, 171–195 (2012).

  • 52.

    La, V. H. et al. Characterization of salicylic acid-mediated modulation of the drought stress responses: Reactive oxygen species, proline, and redox state in Brassica napus. Environ. Exp. Bot. 157, 1–10, https://doi.org/10.1016/j.envexpbot.2018.09.013 (2019).

    CAS  Article  Google Scholar 

  • 53.

    Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A. & Khan, N. A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 6, 462, https://doi.org/10.3389/fpls.2015.00462 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Richardson, M. D. & Bacon, C. W. Cyclic hydroxamic acid accumulation in corn seedlings exposed to reduced water potentials before, during, and after germination. J. Chem. Ecol. 19, 1613–1624 (1993).

    CAS  PubMed  Google Scholar 

  • 55.

    Niemeyer, H. M. Hydroxamic acids derived from 2-hydroxy-2H−1,4-benzoxazin-3(4H)-one: key defense chemicals of cereals. J. Agr. Food Chem. 57, 1677–1696 (2009).

    CAS  Google Scholar 

  • 56.

    Glauser, G. et al. Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. Plant J. 68, 901–911 (2011).

    CAS  PubMed  Google Scholar 

  • 57.

    Adhikari, K. B. et al. Benzoxazinoids: cereal phytochemicals with putative therapeutic and health-protecting properties. Mol. Nutr. Food Res. 59, 1324–1338 (2015).

    CAS  PubMed  Google Scholar 

  • 58.

    Ma, D., Sun, D., Wang, C., Li, Y. & Guo, T. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol. Biochem. 80, 60–66 (2014).

    CAS  PubMed  Google Scholar 

  • 59.

    Abid, M. et al. Pre-drought priming sustains grain development under post-anthesis drought stress by regulating the growth hormones in winter wheat (Triticum aestivum L.). Planta 246, 509–524 (2017).

    CAS  PubMed  Google Scholar 

  • 60.

    Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V. & Gómez-Cadenas, A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 162, 2–12 (2018).

    CAS  PubMed  Google Scholar 

  • 61.

    Vaughan, M. M., Block, A., Christensen, S. A., Allen, L. H. & Schmelz, E. A. The effects of climate change associated abiotic stresses on maize phytochemical defenses. Phytochem. Rev. 17, 37–49 (2018).

    CAS  Google Scholar 

  • 62.

    Lancashire, P. D. et al. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 119, 561–601 (1991).

    Google Scholar 

  • 63.

    Hanhineva, K. et al. Qualitative characterization of benzoxazinoid derivatives in whole grain rye and wheat by LC-MS metabolite profiling. J. Agr.Food Chem. 59, 921–927 (2011).

    CAS  Google Scholar 

  • 64.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2017, 2019)

  • 65.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • 66.

    Ruttkies, C., Schymanski, E. L., Wolf, S., Hollender, J. & Neumann, S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J. Cheminform. 8, 3, https://doi.org/10.1186/s13321-016-0115-9 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 67.

    Ferreres, F., Gil-Izquierdo, A., Andrade, P. B., Valentão, P. & Tomás-Barberán, F. A. Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1161, 214–223 (2007).

    CAS  PubMed  Google Scholar 

  • 68.

    Waridel, P. et al. Evaluation of quadrupole timt-of-flight tandem mass spectrometry and ion-trap muliple-stage mass spectrometry for the differentiation of C-glycosidic flavonoid isomers. J. Chromatogr. A 926, 29–41 (2001).

    CAS  PubMed  Google Scholar 

  • 69.

    Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 70.

    Wouters, F. C., Blanchette, B., Gershenzon, J. & Vassão, D. G. Plant defense and herbivore counter-defense: benzoxazinoids and insect herbivores. Phytochemistry Rev. 15, 1127–1151 (2016).


  • Source: Ecology - nature.com

    Dimorphic flowers modify the visitation order of pollinators from male to female flowers

    Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation