in

The age distribution of global soil carbon inferred from radiocarbon measurements

  • 1.

    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Google Scholar 

  • 2.

    Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).

    Google Scholar 

  • 3.

    Minasny, B. et al. Soil carbon 4 per mille. Geoderma 292, 59–86 (2017).

    Google Scholar 

  • 4.

    Todd-Brown, K. E. O. et al. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 11, 2341–2356 (2014).

    Google Scholar 

  • 5.

    Schlesinger, W. H. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348, 232–234 (1990).

    Google Scholar 

  • 6.

    van Groenigen, K. J. et al. Faster turnover of new soil carbon inputs under increased atmospheric CO2. Glob. Change Biol. 23, 4420–4429 (2017).

    Google Scholar 

  • 7.

    Richter, D. D., Markewitz, D., Trumbore, S. E. & Wells, C. G. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400, 56–58 (1999).

    Google Scholar 

  • 8.

    Plaza, C. et al. Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nat. Geosci. 12, 627–631 (2019).

    Google Scholar 

  • 9.

    Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    Google Scholar 

  • 10.

    Trumbore, S. Radiocarbon and soil carbon dynamics. Annu. Rev. Earth Planet. Sci. 37, 47–66 (2009).

    Google Scholar 

  • 11.

    Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control of soil organic carbon storage and turnover. Nature 389, 170–173 (1997).

    Google Scholar 

  • 12.

    Lawrence, C. R. et al. An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0. Earth Syst. Sci. Data 12, 61–76 (2020).

    Google Scholar 

  • 13.

    He, Y. et al. Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science 353, 1419–1424 (2016).

    Google Scholar 

  • 14.

    Stuiver, M. & Polach, H. A. Discussion reporting of 14C data. Radiocarbon 19, 355–363 (1977).

    Google Scholar 

  • 15.

    Hemingway, J. D. et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570, 228–231 (2019).

    Google Scholar 

  • 16.

    Kramer, M. G. & Chadwick, O. A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nat. Clim. Change 8, 1104–1108 (2018).

    Google Scholar 

  • 17.

    Xu, X. et al. Soil properties control decomposition of soil organic carbon: results from data-assimilation analysis. Geoderma 262, 235–242 (2016).

    Google Scholar 

  • 18.

    Rasmussen, C. et al. Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 137, 297–306 (2018).

    Google Scholar 

  • 19.

    Lalonde, K., Mucci, A., Ouellet, A. & Gélinas, Y. Preservation of organic matter in sediments promoted by iron. Nature 483, 198–200 (2012).

    Google Scholar 

  • 20.

    Gentsch, N. et al. Temperature response of permafrost soil carbon is attenuated by mineral protection. Glob. Change Biol. 24, 3401–3415 (2018).

    Google Scholar 

  • 21.

    Carvalhais, N. et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514, 213–217 (2014).

    Google Scholar 

  • 22.

    Fan, N. et al. Apparent ecosystem carbon turnover time: uncertainties and robust features. Earth Syst. Sci. Data Discuss. https://doi.org/10.5194/essd-2019-235 (2020).

  • 23.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Google Scholar 

  • 24.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    Google Scholar 

  • 25.

    Balesdent, J. et al. Atmosphere–soil carbon transfer as a function of soil depth. Nature 559, 599–602 (2018).

    Google Scholar 

  • 26.

    Lawrence, D. M. et al. The Community Land Model Version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).

    Google Scholar 

  • 27.

    Zhu, Q. et al. Representing nitrogen, phosphorus, and carbon interactions in the E3SM Land Model: development and global benchmarking. J. Adv. Model. Earth Syst. 11, 2238–2258 (2019).

    Google Scholar 

  • 28.

    Chen, J. et al. Comparison with global soil radiocarbon observations indicates needed carbon cycle improvements in the E3SM Land Model. J. Geophys. Res. Biogeosci. 124, 1098–1114 (2019).

    Google Scholar 

  • 29.

    Koven, C. D. et al. The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences 10, 7109–7131 (2013).

    Google Scholar 

  • 30.

    Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017).

    Google Scholar 

  • 31.

    Sierra, C. A., Hoyt, A. M., He, Y. & Trumbore, S. E. Soil organic matter persistence as a stochastic process: age and transit time distributions of carbon in soils. Glob. Biogeochem. Cycles 32, 1574–1588 (2018).

    Google Scholar 

  • 32.

    Hobley, E., Baldock, J., Hua, Q. & Wilson, B. Land-use contrasts reveal instability of subsoil organic carbon. Glob. Change Biol. 23, 955–965 (2017).

    Google Scholar 

  • 33.

    Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).

    Google Scholar 

  • 34.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Google Scholar 

  • 35.

    Parton, W. J., Stewart, J. W. B. & Cole, C. V. Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5, 109–131 (1988).

    Google Scholar 

  • 36.

    Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M. & Vargas, R. Globally rising soil heterotrophic respiration over recent decades. Nature 560, 80–83 (2018).

    Google Scholar 

  • 37.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Google Scholar 

  • 38.

    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Google Scholar 

  • 39.

    Soil Survey Staff Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys 2nd edn (USDA, 1999).

  • 40.

    Levin, I. & Kromer, B. Twenty years of atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon 39, 205–218 (1997).

    Google Scholar 

  • 41.

    Levin, I., Kromer, B. & Hammer, S. Atmospheric Δ14CO2 trend in Western European background air from 2000 to 2012. Tellus B 65, 20092 (2013).

    Google Scholar 

  • 42.

    Hua, Q., Barbetti, M. & Rakowski, A. Z. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55, 2059–2072 (2013).

    Google Scholar 

  • 43.

    Friedl, M. A. et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).

    Google Scholar 

  • 44.

    Sierra, C. A. et al. Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil. Biogeosciences 9, 3013–3028 (2012).

    Google Scholar 

  • 45.

    Schrumpf, M. et al. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10, 1675–1691 (2013).

    Google Scholar 

  • 46.

    Gaudinski, J. B., Trumbore, S. E., Davidson, E. A. & Zheng, S. H. Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51, 33–69 (2000).

    Google Scholar 

  • 47.

    Thompson, M. V. & Randerson, J. T. Impulse response functions of terrestrial carbon cycle models: methods and application. Glob. Change Biol. 5, 371–394 (1999).

    Google Scholar 

  • 48.

    Sierra, C. A., Müller, M., Metzler, H., Manzoni, S. & Trumbore, S. E. The muddle of ages, turnover, transit, and residence times in the carbon cycle. Glob. Change Biol. 23, 1763–1773 (2017).

    Google Scholar 

  • 49.

    Harmonized World Soil Database Version 1.2 (FAO, 2012).

  • 50.

    Brown, J., Ferrians O. Jr, Heginbottom, J. & Melnikov, E. Circum-Arctic Map of Permafrost and Ground-Ice Conditions (US Geological Survey, 1997).

  • 51.

    Collier, N. et al. The International Land Model Benchmarking (ILAMB) system: design, theory, and implementation. J. Adv. Model. Earth Syst. 10, 2731–2754 (2018).

    Google Scholar 

  • 52.

    Bonan, G. B. et al. Model structure and climate data uncertainty in historical simulations of the terrestrial carbon cycle (1850–2014). Glob. Biogeochem. Cycles 33, 1310–1326 (2019).

    Google Scholar 

  • 53.

    Lawrence, D. M. et al. The land use model intercomparison project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).

    Google Scholar 

  • 54.

    Brunke, M. A. et al. Implementing and evaluating variable soil thickness in the Community Land Model, Version 4.5 (CLM4.5). J. Clim. 29, 3441–3461 (2016).

    Google Scholar 


  • Source: Ecology - nature.com

    Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion

    The biodiversity leader who is fighting for nature amid a pandemic