in

Testing algal-based pCO2 proxies at a modern CO2 seep (Vulcano, Italy)

  • 1.

    Caillon, N. et al. Timing of atmospheric CO2 and Antarctic temperature changes across termination III. Science 299, 1728–1731. https://doi.org/10.1126/science.1078758 (2003).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 2.

    Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Betts, R. A., Jones, C. D., Knight, J. R., Keeling, R. F. & El Kennedy, J. J. Niño and a record CO2 rise. Nat. Clim. Change 6, 806–810 (2016).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Hollis, C. J. et al. The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. Geosci. Model Dev. 12, 3149–3206. https://doi.org/10.5194/gmd-12-3149-2019 (2019).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Farquhar, G. D., Oleary, M. H. & Berry, J. A. On the relationship between carbon isotope discrimination and the inter-cellular carbon-dioxide concentration in leaves. Aust. J. Plant. Physiol. 9, 121–137 (1982).

    CAS  Google Scholar 

  • 6.

    Hayes, J. M., Freeman, K. H., Popp, B. N. & Hoham, C. H. Compound-specific isotopic analyses—a novel tool for reconstruction of ancient biogeochemical processes. Org. Geochem. 16, 1115–1128 (1990).

    CAS  Article  Google Scholar 

  • 7.

    Popp, B. N., Takigiku, R., Hayes, J. M., Louda, J. W. & Baker, E. W. The post-paleozoic chronology and mechanism of C-13 depletion in primary marine organic-matter. Am. J. Sci. 289, 436–454 (1989).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Jasper, J. P., Hayes, J. M., Mix, A. C. & Prahl, F. G. Photosynthetic fractionation of C-13 and concentrations of dissolved CO2 in the central equatorial pacific during the last 255,000 years. Paleoceanography 9, 781–798 (1994).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Young, J. N., Rickaby, R. E. M., Kapralov, M. V. & Filatov, D. A. Adaptive signals in algal Rubisco reveal a history of ancient atmospheric carbon dioxide. Philos. Trans. R Soc. B 367, 483–492 (2012).

    CAS  Article  Google Scholar 

  • 10.

    Laws, E. A., Thompson, P. A., Popp, B. N. & Bidigare, R. R. Sources of inorganic carbon for marine microalgal photosynthesis: A reassessment of delta C-13 data from batch culture studies of Thalassiosira pseudonana and Emiliania huxleyi. Limnol. Oceanogr. 43, 136–142 (1998).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Popp, B. N. et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Acta. 62, 69–77 (1998).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Degens, E. T., Guillard, R. R., Sackett, W. M. & Hellebus, J. A. Metabolic fractionation of carbon isotopes in marine plankton: I. Temperature and respiration experiments. Deep-Sea Res. 15, 1–000. https://doi.org/10.1016/0011-7471(68)90024-7 (1968).

    CAS  Article  Google Scholar 

  • 13.

    Francois, R. et al. Changes in the delta-C-13 of surface-water particulate organic-matter across the subtropical convergence in the SW Indian-Ocean. Glob. Biogeochem. Cycles 7, 627–644 (1993).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C. & Macko, S. A. Dependence of phytoplankton carbon isotopic composition on growth-rate and [CO2](Aq)—theoretical considerations and experimental results. Geochim. Cosmochim. Acta. 59, 1131–1138 (1995).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Nimer, N. A. & Merrett, M. J. Calcification rate in emiliania-huxleyi lohmann in response to light, nitrate and availability of inorganic carbon. New Phytol. 123, 673–677. https://doi.org/10.1111/j.1469-8137.1993.tb03776.x (1993).

    CAS  Article  Google Scholar 

  • 16.

    Rau, G. H., Riebesell, U. & WolfGladrow, D. CO2[aq]-dependent photosynthetic C-13 fractionation in the ocean: A model versus measurements. Glob. Biogeochem. Cycles 11, 267–278. https://doi.org/10.1029/97gb00328 (1997).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Bidigare, R. R. et al. Consistent fractionation of C-13 in nature and in the laboratory: Growth-rate effects in some haptophyte algae. Glob. Biogeochem. Cycles 11, 279–292 (1997).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Goericke, R., Montoya, J. P., & Fry, B. In Stable Isotope in Ecology (eds Lajtha, K. & Michener, B.) 187–221 (Blackwell, 1994).

  • 19.

    Wilkes, E. B., Carter, S. J. & Pearson, A. CO2-dependent carbon isotope fractionation in the dinoflagellate Alexandrium tamarense. Geochim.. Cosmochim. Acta 212, 48–61. https://doi.org/10.1016/j.gca.2017.05.037 (2017).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Boller, A. J., Thomas, P. J., Cavanaugh, C. M. & Scott, K. M. Low stable carbon isotope fractionation by coccolithophore RubisCO. Geochim. Cosmochim. Acta 75, 7200–7207. https://doi.org/10.1016/j.gca.2011.08.031 (2011).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Scott, K. M. et al. Kinetic isotope effect and biochemical characterization of form IA RubisCO from the marine cyanobacterium Prochlorococcus marinus MIT9313. Limnol. Oceanogr. 52, 2199–2204. https://doi.org/10.4319/lo.2007.52.5.2199 (2007).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Wilkes, E. B. & Pearson, A. A general model for carbon isotopes in red-lineage phytoplankton: Interplay between unidirectional processes and fractionation by RubisCO. Geochim. Cosmochim. Acta 265, 163–181 (2019).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Rau, G. H., Riebesell, U. & WolfGladrow, D. A model of photosynthetic C-13 fractionation by marine phytoplankton based on diffusive molecular CO2 uptake. Mar. Ecol. Prog. Ser. 133, 275–285 (1996).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Stoll, H. M. et al. Upregulation of phytoplankton carbon concentrating mechanisms during low CO2 glacial periods and implications for the phytoplankton pCO2 proxy. Quat. Sci. Rev. 208, 1–20. https://doi.org/10.1016/j.quascirev.2019.01.012 (2019).

    ADS  Article  Google Scholar 

  • 25.

    Holtz, L. M., Wolf-Gladrow, D. & Thoms, S. Simulating the effects of light intensity and carbonate system composition on particulate organic and inorganic carbon production in Emiliania huxleyi. J. Theor. Biol. 372, 192–204. https://doi.org/10.1016/j.jtbi.2015.02.024 (2015).

    MathSciNet  CAS  Article  PubMed  MATH  Google Scholar 

  • 26.

    Laws, E. A., Popp, B. N., Bidigare, R. R., Riebesell, U. & Burkhardt, S. Controls on the molecular distribution and carbon isotopic composition of alkenones in certain haptophyte algae. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2000gc000057 (2001).

    Article  Google Scholar 

  • 27.

    Popp, B. N. et al. A new method for estimating growth rates of alkenone-producing haptophytes. Limnol. Oceanogr. Methods 4, 114–129. https://doi.org/10.4319/lom.2006.4.114 (2006).

    CAS  Article  Google Scholar 

  • 28.

    Jasper, J. P. & Hayes, J. M. A carbon isotope record of CO2 levels during the late quaternary. Nature 347, 462–464 (1990).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Pagani, M., Arthur, M. A. & Freeman, K. H. Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14, 273–292 (1999).

    ADS  Article  Google Scholar 

  • 30.

    Badger, M. P. S. et al. CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet. Paleoceanography https://doi.org/10.1002/palo.20015 (2013).

    Article  Google Scholar 

  • 31.

    Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B. & Bohaty, S. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–603 (2005).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Zhang, Y. G., Pagani, M., Liu, Z. H., Bohaty, S. M. & DeConto, R. A 40-million-year history of atmospheric CO2. Philos. Trans. R. Soc. A 371, 20130096 (2013).

    ADS  Article  Google Scholar 

  • 33.

    Badger, M. P. S. et al. Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels. Clim. Past 15, 539–554. https://doi.org/10.5194/cp-15-539-2019 (2019).

    Article  Google Scholar 

  • 34.

    Zhang, Y. G. et al. Refining the alkenone-pCO2 method I: Lessons from the quaternary glacial cycles. Geochim. Cosmochim. Acta 260, 177–191. https://doi.org/10.1016/j.gca.2019.06.032 (2019).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Brassell, S. C. Climatic influences on the Paleogene evolution of alkenones. Paleoceanography 29, 255–272 (2014).

    ADS  Article  Google Scholar 

  • 36.

    Bice, K. L. et al. A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography 21, PA2002 (2006).

    ADS  Article  Google Scholar 

  • 37.

    Sinninghe Damsté, J. S., Kuypers, M. M. M., Pancost, R. D. & Schouten, S. The carbon isotopic response of algae, (cyano)bacteria, archaea and higher plants to the late Cenomanian perturbation of the global carbon cycle: Insights from biomarkers in black shales from the Cape Verde Basin (DSDP Site 367). Org. Geochem. 39, 1703–1718 (2008).

    Article  Google Scholar 

  • 38.

    Naafs, B. D. A. et al. Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic Event 1a. Nat. Geosci. 9, 135 (2016).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Witkowski, C. R., Weijers, J. W. H., Blais, B., Schouten, S. & Sinninghe Damsté, J. S. Molecular fossils from phytoplankton reveal secular PCO2 trend over the Phanerozoic. Sci Adv. 4, eaat4556. https://doi.org/10.1126/sciadv.aat4556 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Benthien, A. et al. Carbon isotopic fractionation during a mesocosm bloom experiment dominated by Emiliania huxleyi: Effects of CO2 concentration and primary production. Geochim. Cosmochim. Acta 71, 1528–1541. https://doi.org/10.1016/j.gca.2006.12.015 (2007).

    ADS  CAS  Article  Google Scholar 

  • 41.

    Dando, P. R., Stuben, D. & Varnavas, S. P. Hydrothermalism in the Mediterranean sea. Prog. Oceanogr. 44, 333–367 (1999).

    ADS  Article  Google Scholar 

  • 42.

    Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).

    ADS  CAS  Article  Google Scholar 

  • 43.

    Johnson, V. R. et al. Responses of marine benthic microalgae to elevated CO2. Mar. Biol. https://doi.org/10.1007/s00227-011-1840-2 (2011).

    Article  Google Scholar 

  • 44.

    Fabricius, K. E. et al. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat. Clim. Change 1, 165–169 (2011).

    ADS  CAS  Article  Google Scholar 

  • 45.

    Brinkman, T. J. & Smith, A. M. Effect of climate change on crustose coralline algae at a temperate vent site, White Island, New Zealand. Mar. Freshw. Res. 66, 360–370 (2015).

    Article  Google Scholar 

  • 46.

    Agostini, S. et al. Geochemistry of two shallow CO2 seeps in Shikine Island (Japan) and their potential for ocean acidification research. Reg. Stud. Mar. Sci. 2, 45–53 (2015).

    Article  Google Scholar 

  • 47.

    Urbarova, I. et al. Ocean acidification at a coastal CO2 vent induces expression of stress-related transcripts and transposable elements in the sea anemone Anemonia viridis. PLoS ONE 14, e0210358. https://doi.org/10.1371/journal.pone.0218009 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 48.

    Horwitz, R., Borell, E. M., Yam, R., Shemesh, A. & Fine, M. Natural high pCO2 increases autotrophy in Anemonia viridis (Anthozoa) as revealed from stable isotope (C, N) analysis. Sci. Rep. 5, 8779. https://doi.org/10.1038/srep08779 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Cornwall, C. E. et al. Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Sci. Rep. 7, 46297 (2017).

    ADS  CAS  Article  Google Scholar 

  • 50.

    Witkowski, C. R. et al. Validation of carbon isotope fractionation in algal lipids as a PCO2 proxy using a natural CO2 seep (Shikine Island, Japan). Biogeosciences 16, 4451–4461. https://doi.org/10.5194/bg-16-4451-2019 (2019).

    ADS  CAS  Article  Google Scholar 

  • 51.

    Castañeda, I. S., Werne, J. P. & Johnson, T. C. Influence of climate change on algal community structure and primary productivity of Lake Malawi (East Africa) from the last glacial maximum to present. Limnol. Oceanogr. 54, 2431–2447 (2009).

    ADS  Article  Google Scholar 

  • 52.

    Martin-Creuzburg, D. & von Elert, E. Good food versus bad food: the role of sterols and polyunsaturated fatty acids in determining growth and reproduction of Daphnia magna. Aquat. Ecol. 43, 943–950. https://doi.org/10.1007/s10452-009-9239-6 (2009).

    CAS  Article  Google Scholar 

  • 53.

    McCarthy, E. D. & Calvin, M. Organic geochemical studies. I. Molecular criteria for hydrocarbon genesis. Nature 216, 642. https://doi.org/10.1038/216642a0 (1967).

    ADS  CAS  Article  Google Scholar 

  • 54.

    Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant. Phys. 40, 503–537 (1989).

    CAS  Article  Google Scholar 

  • 55.

    Klok, J., Cox, H. C., Deleeuw, J. W. & Schenck, P. A. Loliolides and dihydroactinidiolide in a recent marine sediment probably indicate a major transformation pathway of carotenoids. Tetrahedron Lett. 25, 5577–5580 (1984).

    CAS  Article  Google Scholar 

  • 56.

    Wright, S. W. & Jeffrey, S. Fucoxanthin pigment markers of marine phytoplankton analysed by HPLC and HPTLC. Mar. Ecol. Prog. Ser. 38, 259–266 (1987).

    ADS  CAS  Article  Google Scholar 

  • 57.

    Burkhardt, S., Amoroso, G., Riebesell, U. & Sultemeyer, D. CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. Limnol. Oceanogr. 46, 1378–1391. https://doi.org/10.4319/lo.2001.46.6.1378 (2001).

    ADS  CAS  Article  Google Scholar 

  • 58.

    Pancost, R. D., Freeman, K. H., Wakeham, S. G. & Robertson, C. Y. Controls on carbon isotope fractionation by diatoms in the Peru upwelling region. Geochim. Cosmochim. Acta 61, 4983–4991. https://doi.org/10.1016/S0016-7037(97)00351-7 (1997).

    ADS  CAS  Article  Google Scholar 

  • 59.

    Young, J. N. & Hopkinson, B. M. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms. J. Exp. Bot. 68, 3751–3762. https://doi.org/10.1093/jxb/erx130 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 60.

    Volkman, J. K. Sterols in microorganisms. Appl. Microbiol. Biotechnol. 60, 495–506. https://doi.org/10.1007/s00253-002-1172-8 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 61.

    Grice, K. et al. Effects of zooplankton herbivory on biomarker proxy records. Paleoceanography 13, 686–693. https://doi.org/10.1029/98pa01871 (1998).

    ADS  Article  Google Scholar 

  • 62.

    Mook, W. G., Bommerson, J. C. & Staverman, W. H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon-dioxide. Earth Planet Sci. Lett. 22, 169–176 (1974).

    ADS  CAS  Article  Google Scholar 

  • 63.

    Boatta, F. et al. Geochemical survey of Levante Bay, Vulcano Island (Italy), a natural laboratory for the study of ocean acidification. Mar. Pollut. Bull. 73, 485–494 (2013).

    CAS  Article  Google Scholar 

  • 64.

    Madigan, M. T., Takigiku, R., Lee, R. G., Gest, H. & Hayes, J. M. Carbon isotope fractionation by thermophilic phototrophic sulfur bacteria—evidence for autotrophic growth in natural-populations. Appl. Environ. Microb. 55, 639–644 (1989).

    CAS  Article  Google Scholar 

  • 65.

    Laws, E. A., Bidigare, R. R. & Popp, B. N. Effect of growth rate and CO2 concentration on carbon isotopic fractionation by the marine diatom Phaeodactylum tricornutum. Limnol. Oceanogr. 42, 1552–1560 (1997).

    ADS  CAS  Article  Google Scholar 

  • 66.

    Thomas, P. J. et al. Isotope discrimination by form IC RubisCO from Ralstonia eutropha and Rhodobacter sphaeroides, metabolically versatile members of ‘Proteobacteria’ from aquatic and soil habitats. Environ. Microbiol. 21, 72–80. https://doi.org/10.1111/1462-2920.14423 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 67.

    Popp, B. N., Kenig, F., Wakeham, S. G., Laws, E. A. & Bidigare, R. R. Does growth rate affect ketone unsaturation and intracellular carbon isotopic variability in Emiliania huxleyi?. Paleoceanography 13, 35–41. https://doi.org/10.1029/97pa02594 (1998).

    ADS  Article  Google Scholar 

  • 68.

    Hoins, M. et al. CO2-dependent carbon isotope fractionation in dinoflagellates relates to their inorganic carbon fluxes. J. Exp. Mar. Biol. Ecol. 481, 9–14. https://doi.org/10.1016/j.jembe.2016.04.001 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 69.

    Goericke, R. & Fry, B. Variations of marine plankton delta-C-13 with latitude, temperature, and dissolved CO2 in the world ocean. Glob. Biogeochem. Cycles 8, 85–90. https://doi.org/10.1029/93gb03272 (1994).

    ADS  CAS  Article  Google Scholar 

  • 70.

    Weiss, R. F. Carbon dioxide in water and seawater: The solubility of a non-deal gas. Mar. Chem. 2, 203–215. https://doi.org/10.1016/0304-4203(74)90015-2 (1974).

    CAS  Article  Google Scholar 

  • 71.

    Frazzetta, G., La Volpe, L. & Sheridan, M. F. Evolution of the Fossa cone, Vulcano. J. Volcanol. Geotherm. Res. 17, 139–360 (1984).

    Google Scholar 

  • 72.

    Chiodini, G., Cioni, R. & Marini, L. Reactions governing the chemistry of crater fumaroles from Vulcano-Island, Italy, and implications for volcanic surveillance. Appl. Geochem. 8, 357–371 (1993).

    CAS  Article  Google Scholar 

  • 73.

    Inguaggiato, S. et al. Total CO2 output from Vulcano Island (Aeolian Islands, Italy). Geochem. Geophys. Geosyst. https://doi.org/10.1029/2011GC003920 (2012).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion

    The biodiversity leader who is fighting for nature amid a pandemic