in

Plant palatability and trait responses to experimental warming

  • 1.

    Ali, J. G. & Agrawal, A. A. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 17, 293–302 (2012).

    CAS  PubMed  Google Scholar 

  • 2.

    Maron, J. L. & Crone, E. Herbivory: Effects on plant abundance, distribution and population growth. Proc. R. Soc. B Biol. Sci. 273, 2575–2584 (2006).

    Google Scholar 

  • 3.

    Pachauri, R. K. et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, 2014).

  • 4.

    Robinet, C. & Roques, A. Direct impacts of recent climate warming on insect populations. Integr. Zool. 5, 132–142 (2010).

    PubMed  Google Scholar 

  • 5.

    Lemoine, N. P., Drews, W. A., Burkepile, D. E. & Parker, J. D. Increased temperature alters feeding behavior of a generalist herbivore. Oikos 122, 1669–1678 (2013).

    Google Scholar 

  • 6.

    Lemoine, N. P., Burkepile, D. E. & Parker, J. D. Variable effects of temperature on insect herbivory. PeerJ 2, e376 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 7.

    Bale, J. S. et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).

    ADS  Google Scholar 

  • 8.

    Dostálek, T., Rokaya, M. B. & Münzbergová, Z. Altitude, habitat type and herbivore damage interact in their effects on plant population dynamics. PLoS ONE 13, e0209149 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Descombes, P., Kergunteuil, A., Glauser, G., Rasmann, S. & Pellissier, L. Plant physical and chemical traits associated with herbivory in situ and under a warming treatment. J. Ecol. 108, 733–749 (2020).

    Google Scholar 

  • 10.

    Bidart-Bouzat, M. G. & Imeh-Nathaniel, A. Global change effects on plant chemical defenses against insect herbivores. J. Integr. Plant Biol. 50, 1339–1354 (2008).

    CAS  PubMed  Google Scholar 

  • 11.

    Pellissier, L., Roger, A., Bilat, J. & Rasmann, S. High elevation Plantago lanceolata plants are less resistant to herbivory than their low elevation conspecifics: Is it just temperature?. Ecography 37, 950–959 (2014).

    Google Scholar 

  • 12.

    Dostálek, T. et al. Trade-off among different anti-herbivore defence strategies along an altitudinal gradient. AoB Plants 8, plw026 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 13.

    Knappová, J. et al. Population differentiation related to climate of origin affects the intensity of plant–herbivore interactions in a clonal grass. Basic Appl. Ecol. 28, 76–86 (2018).

    Google Scholar 

  • 14.

    Mason, C. M. et al. Macroevolution of leaf defenses and secondary metabolites across the genus Helianthus. New Phytol. 209, 1720–1733 (2016).

    CAS  PubMed  Google Scholar 

  • 15.

    Reich, P. B. & Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. 101, 11001–11006 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    Backhaus, S., Wiehl, D., Beierkuhnlein, C., Jentsch, A. & Wellstein, C. Warming and drought do not influence the palatability of Quercus pubescens Willd leaves of four European provenances. Arthropod-Plant Interact. 8, 329–337 (2014).

    Google Scholar 

  • 17.

    Zhang, P. et al. Effects of rising temperature on the growth, stoichiometry, and palatability of aquatic plants. Front. Plant Sci. 9, 8 (2019).

    Google Scholar 

  • 18.

    Bossdorf, O. et al. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144, 1–11 (2005).

    ADS  PubMed  Google Scholar 

  • 19.

    Núñez-Farfán, J. & Schlichting, C. D. Evolution in changing environments: The ‘Synthetic’ work of Clausen, Keck, and Hiesey. Q. Rev. Biol. 76, 433–457 (2001).

    PubMed  Google Scholar 

  • 20.

    Münzbergová, Z. & Skuhrovec, J. Effect of habitat conditions and plant traits on leaf damage in the carduoideae subfamily. PLoS ONE 8, e64639 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Kuglerová, M., Skuhrovec, J. & Münzbergová, Z. Relative importance of drought, soil quality, and plant species in determining the strength of plant–herbivore interactions. Ecol. Entomol. 44, 665–677 (2019).

    Google Scholar 

  • 22.

    Rathinasabapathi, B. et al. Arsenic hyperaccumulation in the Chinese brake fern (Pteris vittata) deters grasshopper (Schistocerca americana) herbivory. New Phytol. 175, 363–369 (2007).

    CAS  PubMed  Google Scholar 

  • 23.

    Akiyama, S. & Ohba, H. Studies of impatiens (Balsaminaceae) of Nepal 3. Impatiens scabrida and Allied species. Bull. Natl. Mus. Nat. Sci. Ser. B Bot. 42, 121–130 (2016).

    Google Scholar 

  • 24.

    Press, J. R., Shrestha, K. K. & Sutton, D. A. Annotated checklist of the flowering plants of Nepal (The Natural History Museum, London, 2000).

    Google Scholar 

  • 25.

    Gruntman, M., Segev, U., Glauser, G. & Tielbörger, K. Evolution of plant defences along an invasion chronosequence: Defence is lost due to enemy release—but not forever. J. Ecol. 105, 255–264 (2017).

    CAS  Google Scholar 

  • 26.

    Najberek, K., Solarz, W. & Chmura, D. Do local enemies attack alien and native impatiens alike?. Acta Soc. Bot. Pol. 86, 20 (2017).

    Google Scholar 

  • 27.

    Suzuki, M. et al. Flowering phenology and survival of two annual plants Impatiens noli-tangere and Persicaria thunbergii co-occurring in streamside environments. Ecol. Res. 22, 496–501 (2007).

    Google Scholar 

  • 28.

    Laube, J., Sparks, T. H., Bässler, C. & Menzel, A. Small differences in seasonal and thermal niches influence elevational limits of native and invasive Balsams. Biol. Conserv. 191, 682–691 (2015).

    Google Scholar 

  • 29.

    Adamowski, W. Impatiens balfourii as an emerging invader in Europe. in Biological Invasions: Towards a Synthesis, Proceedings (eds. Pysek, P. & Pergl, J.) vol. 8 183–194 (Institut Ecology Tu Berlin, 2009).

  • 30.

    Čuda, J., Skálová, H., Janovský, Z. & Pyšek, P. Habitat requirements, short-term population dynamics and coexistence of native and invasive Impatiens species: A field study. Biol. Invasions 16, 177–190 (2014).

    Google Scholar 

  • 31.

    Čuda, J. et al. Invasive herb Impatiens glandulifera has minimal impact on multiple components of temperate forest ecosystem function. Biol. Invasions 19, 3051–3066 (2017).

    Google Scholar 

  • 32.

    Florianová, A. & Münzbergová, Z. Drivers of natural spread of invasive Impatiens parviflora differ between life-cycle stages. Biol. Invasions 20, 2121–2140 (2018).

    Google Scholar 

  • 33.

    Rokaya, M. B., Dostálek, T. & Münzbergová, Z. Plant-herbivore interactions along elevational gradient: Comparison of field and common garden data. Acta Oecol. 77, 168–175 (2016).

    ADS  Google Scholar 

  • 34.

    Veselá, A., Dostálek, T., Rokaya, M. & Münzbergová, Z. Seed mass and plant origin interact to determine species germination patterns. bioRxiv https://doi.org/10.1101/841114 (2019).

    Article  Google Scholar 

  • 35.

    Tatebe, H. et al. The initialization of the MIROC climate models with hydrographic data assimilation for decadal prediction. J. Meteorol. Soc. Jpn. 90A, 275–294 (2012).

    Google Scholar 

  • 36.

    Aryal, A. et al. Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. Ecol. Evol. 6, 4065–4075 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 37.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Google Scholar 

  • 38.

    Grime, J. P., Cornelissen, J., Hans, H. C., Thompson, K. & Hodgson, J. G. Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos 77, 489–494 (1996).

    Google Scholar 

  • 39.

    Joern, A. & Mole, S. The plant stress hypothesis and variable responses by blue grama grass (Bouteloua gracilis) to water, mineral nitrogen, and insect herbivory. J. Chem. Ecol. 31, 2069–2090 (2005).

    CAS  PubMed  Google Scholar 

  • 40.

    Kautz, S., Trisel, J. A. & Ballhorn, D. J. Jasmonic acid enhances plant cyanogenesis and resistance to herbivory in lima bean. J. Chem. Ecol. 40, 1186–1196 (2014).

    CAS  PubMed  Google Scholar 

  • 41.

    Massey, F. P., Ennos, A. R. & Hartley, S. E. Silica in grasses as a defence against insect herbivores: Contrasting effects on folivores and a phloem feeder. J. Anim. Ecol. 75, 595–603 (2006).

    PubMed  Google Scholar 

  • 42.

    Mainguet, A. M., Louveaux, A., Sayed, G. E. & Rollin, P. Ability of a generalist insect, Schistocerca gregaria, to overcome thioglucoside defense in desert plants: tolerance or adaptation?. Entomol. Exp. Appl. 94, 309–317 (2000).

    CAS  Google Scholar 

  • 43.

    Bernays, E. A. & Lewis, A. C. The effect of wilting on palatability of plants to Schistocerca gregaria, the desert locust. Oecologia 70, 132–135 (1986).

    ADS  CAS  PubMed  Google Scholar 

  • 44.

    McLeod, A. R., Rey, A., Newsham, K. K., Lewis, G. C. & Wolferstan, P. Effects of elevated ultraviolet radiation and endophytic fungi on plant growth and insect feeding in Lolium perenne, Festuca rubra, F. arundinacea and F. pratensis. J. Photochem. Photobiol. B 62, 97–107 (2001).

    CAS  PubMed  Google Scholar 

  • 45.

    Kempel, A., Schädler, M., Chrobock, T., Fischer, M. & van Kleunen, M. Tradeoffs associated with constitutive and induced plant resistance against herbivory. Proc. Natl. Acad. Sci. 108, 5685–5689 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 46.

    Fraser, L. H. & Grime, J. P. Interacting effects of herbivory and fertility on a synthesized plant community. J. Ecol. 87, 514–525 (1999).

    Google Scholar 

  • 47.

    Ehrenberger, F. & Gorbach, S. Methoden der organischen Elementar- und Spurenanalyse (Verlag Chemie, Weinhiem, 1973).

    Google Scholar 

  • 48.

    Olsen, S. R. & Dean, L. A. Phosphorus. in Page AL (ed): Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (viz Pánková et al. 2008) 1035–1049 (1982).

  • 49.

    Andrew, N. R. & Hughes, L. Herbivore damage along a latitudinal gradient: Relative impacts of different feeding guilds. Oikos 108, 176–182 (2005).

    Google Scholar 

  • 50.

    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (ISBN 3–900051–07–0, 2015).

  • 51.

    Crawley, M. J. Statistical computingan introduction to data analysis using S-Plus. (Wiley, 2002).

  • 52.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 2 (2017).

    Google Scholar 

  • 53.

    Naimi, B. usdm: Uncertainty analysis for species distribution models. R Package Version 1, 1–12 (2015).

    Google Scholar 

  • 54.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Google Scholar 

  • 55.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, Berlin, 2002). https://doi.org/10.1007/b97636

    Google Scholar 

  • 56.

    Barton, K. Package ‘MuMIn’. Model selection and model averaging base on information criteria. R package version 3.2. 3. (Vienna: R Foundation for Statistical Computing, 2016).

  • 57.

    Zvereva, E. L. & Kozlov, M. V. Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: a metaanalysis. Glob. Change Biol. 12, 27–41 (2006).

    ADS  Google Scholar 

  • 58.

    Veteli, T. O., Kuokkanen, K., Julkunen-Tiitto, R., Roininen, H. & Tahvanainen, J. Effects of elevated CO2 and temperature on plant growth and herbivore defensive chemistry. Glob. Change Biol. 8, 1240–1252 (2002).

    ADS  Google Scholar 

  • 59.

    Atkin, O. K., Loveys, B. R., Atkinson, L. J. & Pons, T. L. Phenotypic plasticity and growth temperature: understanding interspecific variability. J. Exp. Bot. 57, 267–281 (2006).

    CAS  PubMed  Google Scholar 

  • 60.

    Rosbakh, S., Römermann, C. & Poschlod, P. Specific leaf area correlates with temperature: New evidence of trait variation at the population, species and community levels. Alp. Bot. 125, 79–86 (2015).

    Google Scholar 

  • 61.

    Fontana, V. et al. Decomposing the land-use specific response of plant functional traits along environmental gradients. Sci. Total Environ. 599–600, 750–759 (2017).

    ADS  PubMed  Google Scholar 

  • 62.

    Poorter, H., Niinemets, Ü, Walter, A., Fiorani, F. & Schurr, U. A method to construct dose–response curves for a wide range of environmental factors and plant traits by means of a meta-analysis of phenotypic data. J. Exp. Bot. 61, 2043–2055 (2010).

    CAS  PubMed  Google Scholar 

  • 63.

    Loveys, B. R., Scheurwater, I., Pons, T. L., Fitter, A. H. & Atkin, O. K. Growth temperature influences the underlying components of relative growth rate: An investigation using inherently fast- and slow-growing plant species. Plant Cell Environ. 25, 975–987 (2002).

    Google Scholar 

  • 64.

    Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W. & Freschet, G. T. Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Funct. Ecol. 27, 1254–1261 (2013).

    Google Scholar 

  • 65.

    Otieno, D. O., Schmidt, M. W. T., Adiku, S. & Tenhunen, J. Physiological and morphological responses to water stress in two Acacia species from contrasting habitats. Tree Physiol. 25, 361–371 (2005).

    CAS  PubMed  Google Scholar 

  • 66.

    Wright, I. J. et al. Global climatic drivers of leaf size. Science 357, 917–921 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 67.

    Münzbergová, Z. et al. Plant origin, but not phylogeny, drive species ecophysiological response to projected climate. Front. Plant Sci. 11, 2 (2020).

    Google Scholar 

  • 68.

    Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 1, 305–335 (1996).

    Google Scholar 

  • 69.

    Danet, A., Anthelme, F., Gross, N. & Kéfi, S. Effects of indirect facilitation on functional diversity, dominance and niche differentiation in tropical alpine communities. J. Veg. Sci. 29, 835–846 (2018).

    Google Scholar 

  • 70.

    Ibanez, S., Lavorel, S., Puijalon, S. & Moretti, M. Herbivory mediated by coupling between biomechanical traits of plants and grasshoppers. Funct. Ecol. 27, 479–489 (2013).

    Google Scholar 

  • 71.

    Cornelissen, T., Fernandes, G. W. & Vasconcellos-Neto, J. Size does matter: Variation in herbivory between and within plants and the plant vigor hypothesis. Oikos 117, 1121–1130 (2008).

    Google Scholar 

  • 72.

    Zava, P. C. & Cianciaruso, M. V. Can we use plant traits and soil characteristics to predict leaf damage in savanna woody species?. Plant Ecol. 215, 625–637 (2014).

    Google Scholar 

  • 73.

    Price, P. W. The plant vigor hypothesis and herbivore attack. Oikos 62, 244–251 (1991).

    Google Scholar 

  • 74.

    Santos, J. C., Tavares, C. B. & Almeida-Cortez, J. S. Plant Vigor Hypothesis refuted: Preference-performance linkage of a gall-inducing weevil on small-sized host plant resources. Braz. J. Biol. 71, 65–69 (2011).

    CAS  PubMed  Google Scholar 

  • 75.

    Albrectsen, B. R., Gardfjell, H., Orians, C. M., Murray, B. & Fritz, R. S. Slugs, willow seedlings and nutrient fertilization: Intrinsic vigor inversely affects palatability. Oikos 105, 268–278 (2004).

    Google Scholar 

  • 76.

    Baskett, C. A. & Schemske, D. W. Latitudinal patterns of herbivore pressure in a temperate herb support the biotic interactions hypothesis. Ecol. Lett. 21, 578–587 (2018).

    PubMed  Google Scholar 

  • 77.

    Loranger, J. et al. Predicting invertebrate herbivory from plant traits: Evidence from 51 grassland species in experimental monocultures. Ecology 93, 2674–2682 (2012).

    PubMed  Google Scholar 

  • 78.

    Carmona, D., Lajeunesse, M. J. & Johnson, M. T. J. Plant traits that predict resistance to herbivores. Funct. Ecol. 25, 358–367 (2011).

    Google Scholar 

  • 79.

    Todd, G. W., Richardson, P. E. & Sengupta, S. P. Leaf and stem anatomical anomalies in a drought-susceptible species, impatiens Balsamina, under conditions of drought stress. Bot. Gaz. 135, 121–126 (1974).

    Google Scholar 

  • 80.

    Tabak, N. M. & von Wettberg, E. Native and introduced jewelweeds of the Northeast. Northeast. Nat. 15, 159–176 (2008).

    Google Scholar 

  • 81.

    Kaarlejärvi, E., Eskelinen, A. & Olofsson, J. Herbivory prevents positive responses of lowland plants to warmer and more fertile conditions at high altitudes. Funct. Ecol. 3, 1244–1253 (2016).

    Google Scholar 

  • 82.

    Kieltyk, P. & Delimat, A. Impact of the alien plant Impatiens glandulifera on species diversity of invaded vegetation in the northern foothills of the Tatra Mountains, Central Europe. Plant Ecol. 220, 1–12 (2019).

    Google Scholar 

  • 83.

    Gaggini, L., Rusterholz, H.-P. & Baur, B. The invasion of an annual exotic plant species affects the above- and belowground plant diversity in deciduous forests to a different extent. Perspect. Plant Ecol. Evol. Syst. 38, 74–83 (2019).

    Google Scholar 

  • 84.

    Yuan, Y.-M. et al. Phylogeny and biogeography of Balsaminaceae inferred from ITS sequences. Taxon 53, 391–403 (2004).

    Google Scholar 


  • Source: Ecology - nature.com

    Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion

    The biodiversity leader who is fighting for nature amid a pandemic