in

The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities

  • 1.

    Giere, O. Meiobenthology – The Microscopic Motile Fauna of Aquatic Sediment. (Springer-Verlag, 2009).

  • 2.

    Schratzberger, M. & Ingels, J. Meiofauna matters: The roles of meiofauna in benthic ecosystems. J. Exp. Mar. Bio. Ecol. 502, 12–25 (2018).

    Google Scholar 

  • 3.

    Carpentier, A., Como, S., Dupuy, C., Lefrançois, C. & Feunteun, E. Feeding ecology of Liza spp. in a tidal flat: Evidence of the importance of primary production (biofilm) and associated meiofauna. J. Sea Res. 92, 86–91 (2014).

    ADS  Google Scholar 

  • 4.

    Schückel, S. et al. Meiofauna as food source for small-sized demersal fish in the southern North Sea. Helgol. Mar. Res. 67, 203–218 (2013).

    ADS  Google Scholar 

  • 5.

    Coull, B. C. Role of meiofauna in estuarine soft-bottom habitats. Aust. J. Ecol. 24, 327–343 (1999).

    Google Scholar 

  • 6.

    Meysman, F. J. R., Middelburg, J. J. & Heip, C. H. R. Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol. Evol. 21, 688–695 (2006).

    PubMed  Google Scholar 

  • 7.

    Meadows, P. S. & Tait, J. Modification of sediment permeability and shear strength by two burrowing invertebrates. Mar. Biol. 101, 75–82 (1989).

    Google Scholar 

  • 8.

    Shaikh, M. A., Meadows, A. & Meadows, P. S. Biological control of avalanching and slope stability in the intertidal zone. In Sedimentary Processes in the Intertidal Zone (eds. Black, K. S., Paterson, D. M. & Cramp, A.) vol. 139, 309–329 (Geological Society, 1998).

  • 9.

    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).

    Google Scholar 

  • 10.

    Buhl-Mortensen, L. et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31, 21–50 (2010).

    ADS  Google Scholar 

  • 11.

    Beaulieu, S. E. Life on glass houses: Sponge stalk communities in the deep sea. Mar. Biol. 138, 803–817 (2001).

    Google Scholar 

  • 12.

    Chambers, L. G. et al. How well do restored intertidal oyster reefs support key biogeochemical properties in a coastal lagoon? Estuaries and Coasts 41, 784–799 (2018).

    Google Scholar 

  • 13.

    Norling, P. & Kautsky, N. Structural and functional effects of Mytilus edulis on diversity of associated species and ecosystem functioning. Mar. Ecol. Prog. Ser. 351, 163–175 (2007).

    ADS  Google Scholar 

  • 14.

    Largaespada, C., Guichard, F. & Archambault, P. Meta-ecosystem engineering: Nutrient fluxes reveal intraspecific and interspecific feedbacks in fragmented mussel beds. Ecology 93, 324–333 (2012).

    PubMed  Google Scholar 

  • 15.

    Ramírez-Llodrà, E. et al. Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).

    ADS  Google Scholar 

  • 16.

    Harris, P. T. Anthropogenic threats to benthic habitats. in Seafloor Geomorphology as Benthic Habitat 39–60 (Elsevier). https://doi.org/10.1016/B978-0-12-385140-6.00003-7 (2012).

  • 17.

    Ramírez-Llodrà, E. et al. Man and the last great wilderness: Human impact on the deep sea. PLoS One 6, e22588 (2011).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Birchenough, S. N. R. et al. Climate change and marine benthos: A review of existing research and future directions in the North Atlantic. Wiley Interdiscip. Rev. Clim. Chang. 6, 203–223 (2015).

    Google Scholar 

  • 19.

    Raw, J. L. et al. Salt marsh elevation and responses to future sea-level rise in the Knysna Estuary, South Africa. African J. Aquat. Sci. 5914 (2020).

  • 20.

    Fujii, T. & Raffaelli, D. Sea-level rise, expected environmental changes, and responses of intertidal benthic macrofauna in the Humber estuary, UK. Mar. Ecol. Prog. Ser. 371, 23–35 (2008).

    ADS  Google Scholar 

  • 21.

    Langdon, C. & Atkinson, M. J. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J. Geophys. Res. C Ocean. 110, 1–16 (2005).

  • 22.

    Smith, J. N. et al. Shifts in coralline algae, macroalgae, and coral juveniles in the Great Barrier Reef associated with present-day ocean acidification. Glob. Chang. Biol. 26, 2149-2160 (2020).

  • 23.

    Turley, C. M., Roberts, J. M. & Guinotte, J. M. Corals in deep-water: Will the unseen hand of ocean acidification destroy cold-water ecosystems? Coral Reefs 26, 445–448 (2007).

    Google Scholar 

  • 24.

    Andersson, A. J., Mackenzie, F. T. & Gattuso, J.-P. Effects of ocean acidification on benthic processes, organisms, and ecosystems. in Ocean Acidification 122–153 (Oxford University Press, 2011).

  • 25.

    Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elem. – Sci. Anthr. 5, 4 (2017).

  • 26.

    Jones, D. O. B. et al. Global reductions in seafloor biomass in response to climate change. Glob. Chang. Biol. 20, 1861–1872 (2014).

    ADS  PubMed  Google Scholar 

  • 27.

    Stratmann, T. et al. The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities. Dryad Digital Repository https://doi.org/10.5061/dryad.gb5mkkwm6 (2020).

  • 28.

    Rex, M. A. et al. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar. Ecol. Prog. Ser. 317, 1–8 (2006).

    ADS  Google Scholar 

  • 29.

    Wei, C.-L. et al. Global patterns and predictions of seafloor biomass using random forests. PLoS One 5, e15323 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 6, e1000097 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 31.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem. Cycles 21, GB4006 (2007).

    ADS  Google Scholar 

  • 33.

    Eakins, B. W. & Sharman, G. F. Volumes of the World’s Oceans from ETOPO1. NOAA National Geophysical Data Center (2010).

  • 34.

    Soltwedel, T. Metazoan meiobenthos along continental margins: a review. Prog. Oceanogr. 46, 59–84 (2000).

    ADS  Google Scholar 

  • 35.

    Eleftheriou, A. & Moore, D. C. Macrofauna Techniques. in Methods for the Study of Marine Benthos (eds. Eleftheriou, A. & McIntyre, A.) vol. 16 160–228 (Blackwell Science Ltd, 1984).

  • 36.

    Rex, M. A. & Etter, R. J. Deep-sea biodiversity. (Harvard University Press, 2010).

  • 37.

    Stratmann, T. et al. The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities – R code. Zenodo, https://doi.org/10.5281/zenodo.3843149 (2020).

  • 38.

    Andrassy, I. Die Rauminhalts- und Gewichtsbestimmung der Fadenwürmer (Nematoden). Acta Zool. 2, 1–15 (1956).

  • 39.

    Feller, R. J. & Warwick, R. M. Energetics. in Introduction to the Study of Meiofauna 181–196 (Smithonian Institution Press, 1988).

  • 40.

    Jensen, P. Measuring carbon content in nematodes. Helgoländer Meeresuntersuchungen 38, 83–86 (1984).

    Google Scholar 

  • 41.

    Wieser, W. Benthic studies in Buzzard Bay. II. The meiofauna. Limnol. Oceanogr. 5, 121–137 (1960).

    ADS  Google Scholar 

  • 42.

    Wieser, W. Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Ark. für Zool. 4, 439–484 (1953).

    Google Scholar 

  • 43.

    Widbom, B. Determination of average individual dry weights and ash-free dry weights in different sieve fractions of marine meiofauna. Mar. Biol. 84, 101–108 (1984).

    Google Scholar 

  • 44.

    Zeng, Q., Huang, D., Lin, R. & Wang, J. Deep-sea metazoan meiofauna from a polymetallic nodule area in the Central Indian Ocean Basin. Mar. Biodivers. 48, 395–405 (2018).

    Google Scholar 

  • 45.

    Grove, S. L., Probert, P. K., Berkenbusch, K. & Nodder, S. D. Distribution of bathyal meiofauna in the region of the Subtropical Front, Chatham Rise, south-west Pacific. J. Exp. Mar. Bio. Ecol. 330, 342–355 (2006).

    Google Scholar 

  • 46.

    Zhang, Z., Zhou, H., Guo, Y. & Mu, F. Comparative study on the nematode community structure in the submarine delta of Huanghe river estuary and its adjacent waters. Oceanol. Limnol. Sin. 32, 436–444 (2001).

    Google Scholar 

  • 47.

    Nodder, S. D., Pilditch, C. A., Probert, P. K. & Hall, J. A. Variability in benthic biomass and activity beneath the Subtropical Front, Chatham Rise, SW Pacific Ocean. Deep-Sea Res. I 50, 959–985 (2003).

  • 48.

    Pfannkuche, O. The deep-sea meiofauna of the Porcupine Seabight and abyssal plain (NE Atlantic): Population structure, distribution, standing stocks. Oceanol. Acta 8, 343–353 (1985).

    Google Scholar 

  • 49.

    Soetaert, K. An ecological-systematical study of the deep-sea meiofauna and nematode communities in the western Mediterranean Sea. PhD Thesis. (Ghent University, 1989).

  • 50.

    Vanhove, S., Beghyn, M., Van Gansbeke, D., Bullough, L. & Vincx, M. A seasonally varying biotope at Signy Island, Antarctic: Implications for meiofaunal structure. Mar. Ecol. Prog. Ser. 202, 13–25 (2000).

    ADS  Google Scholar 

  • 51.

    Vanhove, S. et al. Deep-sea meiofauna communities in Antarctica: Structural analysis and relation with the environment. Mar. Ecol. Prog. Ser. 127, 65–76 (1995).

    ADS  Google Scholar 

  • 52.

    Xiaoshou, L. et al. Abundance and biomass of meiobenthos in the spawning ground of anchovy (Engraulis japanicus) in the southern Huanghai Sea. Acta Oceanol. Sin. 24, 94–104 (2005).

    Google Scholar 

  • 53.

    Heip, C. H. R., Vincx, M. & Vranken, G. The ecology of marine nematodes. Oceanogr. Mar. Biol. An Annu. Rev. 23, 399–489 (1985).

    Google Scholar 

  • 54.

    Gray, J. S. The fauna of the polluted river Tees estuary. Estuar. Coast. Mar. Sci. 4, 653–676 (1976).

    ADS  Google Scholar 

  • 55.

    Grelet, Y. Peuplements méiobenthiques et structure de la Nématofaune du Golfe d’Aqaba (Jordanie-Mer Rouge). PhD Thesis. (Université Aix-Marseille II, 1984).

  • 56.

    Witte, J. & Zijlstra, J. The meiofauna of a tidal flat in the western part of the Wadden Sea and its role in the benthic ecosystem. Mar. Ecol. Prog. Ser. 14, 129–138 (1984).

    ADS  Google Scholar 

  • 57.

    Faubel, A. Determination of individual meiofauna dry weight values in relation to definite size classes. Cah. Biol. Mar. 23, 339–345 (1982).

    Google Scholar 

  • 58.

    Lin, R. et al. Abundance and distribution of meiofauna in the Chukchi Sea. Acta Oceanol. Sin. 33, 90–94 (2014).

    CAS  Google Scholar 

  • 59.

    Shirayama, Y. Size structure of deep-sea meio- and macrobenthos in the western Pacific. Int. Rev. der gesamten Hydrobiol. und Hydrogr. 68, 799–810 (1983).

    Google Scholar 

  • 60.

    Warwick, R. M. & Gee, J. Community structure of estuarine meiobenthos. Mar. Ecol. Prog. Ser. 18, 97–111 (1984).

    ADS  Google Scholar 

  • 61.

    Higgins, R. P. & Thiel, H. Introduction to the Study of Meiofauna. (Smithonian Institution Press, 1988).

  • 62.

    Rutgers van der Loeff, M. M. & Lavaleye, M. S. S. Sediments, fauna and the dispersal of radionuclides at the N.E. Atlantic dumpsite for low-level radioactive wast. Report of the Dutch DORA program. (1984).

  • 63.

    Vanaverbeke, J., Soetaert, K., Heip, C. H. R. & Vanreusel, A. The metazoan meiobenthos along the continental slope of the Goban Spur (NE Atlantic). J. Sea Res. 38, 93–107 (1997).

    ADS  Google Scholar 

  • 64.

    Dinet, A. Répartition quantitative et écologie du méiobenthos de la plaine abyssale Atlantique. PhD Thesis. (University Aix-Marseille II, 1980).

  • 65.

    Baguley, J. G., Hyde, L. J. & Montagna, P. A. A semi-automated digital microphotographic approach to measure meiofaunal biomass. Limnol. Oceanogr. Methods 2, 181–190 (2004).

    Google Scholar 

  • 66.

    Baguley, J. C. Meiofauna community structure and function in the northern Gulf of Mexico deep sea. PhD Thesis. (University of Texas at Austin, 2004).

  • 67.

    McIntyre, A. D. & Warwick, R. M. Meiofauna techniques. in Methods for the Study of Marine Benthos (Blackwell, 1984).

  • 68.

    Warwick, R. M. & Price, R. Ecological and metabolic studies on free-living nematodes from an estuarine mud-flat. Estuar. Coast. Mar. Sci. 9, 257–271 (1979).

    ADS  Google Scholar 

  • 69.

    Gradinger, R., Friedrich, C. & Spindler, M. Abundance, biomass and composition of the sea ice biota of the Greenland Sea pack ice. Deep-Sea Res. II 46, 1457–1472 (1999).

  • 70.

    Riemann, F., Ernst, W. & Ernst, R. Acetate uptake from ambient water by the free-living marine nematode Adoncholaimus thalassophygas. Mar. Biol. 104, 453–457 (1990).

  • 71.

    Rudnick, D. T. Seasonality of community structure and carbon flow in Narragansett Bay sediments. PhD Thesis. (University of Rhode Island, 1984).

  • 72.

    Ólafsson, E. & Elmgren, R. Seasonal dynamics of sublittoral meiobenthos in relation to phytoplankton sedimentation in the Baltic Sea. Estuar. Coast. Shelf Sci. 45, 149–164 (1997).

    ADS  Google Scholar 

  • 73.

    Newton, A. C. & Rowe, G. T. The abundance of benthic calcareous foraminifera and other meiofauna at a time series station in the Northeast Water Polynya, Greenland. J. Geophys. Res. 100, 4423–4438 (1995).

    ADS  Google Scholar 

  • 74.

    Newton, A. C. The distribution and ecology of benthic Foraminifera and associated meiofauna in the northeast Greenland polynya, Greenland. PhD Thesis (Texas A & M University, 1994).

  • 75.

    Hughes, D. J. & Gage, J. D. Benthic metazoan biomass, community structure and bioturbation at three contrasting deep-water sites on the northwest European continental margin. Prog. Oceanogr. 63, 29–55 (2004).

    ADS  Google Scholar 

  • 76.

    Danovaro, R., Tselepides, A., Otegui, A., Della Croce, N. & Bianche, V. B. Dynamics of meiofaunal assemblages on the continental shelf and deep-sea sediments of the Cretan Sea (NE Mediterranean): Relationships with seasonal changes in food supply. Prog. Oceanogr. 46, 367–400 (2000).

    ADS  Google Scholar 

  • 77.

    Danovaro, R. & Fraschetti, S. Meiofaunal vertical zonation on hard-bottoms: Comparison with soft-bottom meiofauna. Mar. Ecol. Prog. Ser. 230, 159–169 (2002).

    ADS  Google Scholar 

  • 78.

    Danovaro, R. Methods for the Study of Deep-Sea Sediments, their Functioning and Biodiversity. (CRC Press, 2010).

  • 79.

    Zeppilli, D., Bongiorni, L., Cattaneo, A., Danovaro, R. & Serrão Santos, R. Meiofauna assemblages of the Condor Seamount (North-East Atlantic Ocean) and adjacent deep-sea sediments. Deep-Sea Res. II 98, 87–100 (2013).

  • 80.

    Snider, L. J., Burnett, B. R. & Hessler, R. R. The composition and distribution of meiofauna and nanobiota in a central North Pacific deep-sea area. Deep-Sea Res. A 31, 1225–1249 (1984).

  • 81.

    Rowe, G. T. Biomass and production of the deep-sea macrobenthos. in Deep-Sea Biology (ed. Rowe, G. T.) (John Wiley & Sons, Inc., 1983).

  • 82.

    Tselepides, A. & Eleftheriou, A. South Aegean (Eastern Mediterranean) continental slope benthos: Macroinfaunal – Environmental relationships. in Deep-Sea Food Chains and the Global Carbon Cycle 139–156, https://doi.org/10.1007/978-94-011-2452-2_9 (Springer Netherlands). (1992).

  • 83.

    Brey, T. Population dynamics in benthic invertebrates. A virtual handbook. (2001).

  • 84.

    Eleftheriou, A. & Basford, D. J. The macrobenthic infauna of the offshore northern North Sea. J. Mar. Biol. Assoc. UK 69, 123–143 (1989).

    Google Scholar 

  • 85.

    Fradette, P. & Bourget, E. Ecology of benthic epifauna of the Estuary and Gulf of St. Lawrence: Factors influencing their distribution and abundance on buoys. Can. J. Fish. Aquat. Sci. 37, 979–999 (1980).

    Google Scholar 

  • 86.

    Bourget, E. & Messier, D. Macrobenthic density, biomass, and fauna of intertidal and subtidal sand in a Magdalen Islands lagoon, Gulf of St. Lawrence. Can. J. Zool. 61, 2509–2518 (1983).

    Google Scholar 

  • 87.

    Gascón, S. Estructura i dinàmica del sistema bentònic en llacunes costaneres del saiguamolls de l’Empordà. PhD Thesis. (University of Girona, 2003).

  • 88.

    McIntyre, A. D. & Eleftheriou, A. The bottom fauna of a flatfish nursery ground. J. Mar. Biol. Assoc. UK 48, 113–142 (1968).

    Google Scholar 

  • 89.

    Brey, T., Müller-Wiegmann, C., Zittier, Z. M. C. & Hagen, W. Body composition in aquatic organisms – A global data bank of relationships between mass, elemental composition and energy content. J. Sea Res. 64, 334–340 (2010).

    ADS  Google Scholar 

  • 90.

    Ellis, D. V. Marine infaunal benthos in arctic North America. vol. 5 (1960).

  • 91.

    Ricciardi, A. & Bourget, E. Weight-to-weight conversion factors for marine benthic macroinvertebrates. Mar. Ecol. Prog. Ser. 163, 245–251 (1998).

    ADS  Google Scholar 

  • 92.

    Brey, T., Rumohr, H. & Ankar, S. Energy content macrobenthic invertebrates: General conversion factors from weight to energy. J. Exp. Mar. Bio. Ecol. 117, 271–278 (1988).

    Google Scholar 

  • 93.

    Rumohr, H., Brey, T. & Ankar, S. A compilation of biometric conversion factors for benthic invertebrates of the Baltic Sea. The Baltic Marine Biologists Publication vol. 9 (1987).

  • 94.

    Bluhm, B. Zur Ökologie der regulären Seeigel im nördlichen Barentsmeer. PhD Thesis. (Kiel University, 1997).

  • 95.

    Gerlach, S., Hahn, A. & Schrage, M. Size spectra of benthic biomass and metabolism. Mar. Ecol. Prog. Ser. 26, 161–173 (1985).

    ADS  Google Scholar 

  • 96.

    Lie, U. A quantitative study of benthic infauna in Puget Sound, Washington, USA, in 1963-1964. Fisk. Skr. Ser. Havundersøkelse 14, 229–556 (1968).

    Google Scholar 

  • 97.

    Persoone, G. A simple volumeter for small invertebrates. Helgoländer Meeresuntersuchungen 22, 141–143 (1971).

    ADS  Google Scholar 

  • 98.

    Piepenburg, D. & von Juterzenka, K. Abundance, biomass and spatial distribution pattern of brittle stars (Echinodermata: Ophiuroidea) on the Kolbeinsey Ridge north of Iceland. Polar Biol. 14, 185–194 (1994).

    Google Scholar 

  • 99.

    Piepenburg, D. & Schmid, M. K. Distribution, abundance, biomass, and mineralization potential of the epibenthic megafauna of the northeast Greenland shelf. Mar. Biol. 125, 321–332 (1996).

    Google Scholar 

  • 100.

    Salonen, K., Sarvala, J., Hakala, I. & Viljanen, M. L. The relation of energy and organic carbon in aquatic invertebrates. Limnol. Oceanogr. 21, 724–730 (1976).

    ADS  CAS  Google Scholar 

  • 101.

    Wacasey, J. W. & Atkinson, E. G. Energy values of marine benthic invertebrates from the Canadian Arctic. Mar. Ecol. Prog. Ser. 39, 243–250 (1987).

    ADS  Google Scholar 

  • 102.

    Frithsen, J. B., Rudnick, D. T. & Doering, P. H. The determination of fresh organic carbon weight from formaldehyde preserved macrofaunal samples. Hydrobiologia 133, 203–208 (1986).

    Google Scholar 

  • 103.

    Galéron, J., Sibuet, M., Mahaut, M.-L. & Dinet, A. Variation in structure and biomass of the benthic communities at three contrasting sites in the tropical Northeast Atlantic. Mar. Ecol. Prog. Ser. 197, 121–137 (2000).

    ADS  Google Scholar 

  • 104.

    Rice, A. L., Aldred, R. G., Darlington, E. & Wild, R. A. The quantitative estimation of the deep-sea megabenthos; A new approach to an old problem. Oceanol. Acta 5, 63–72 (1982).

    Google Scholar 

  • 105.

    Curtis, M. A. Life cycles and population dynamics of marine benthic polychaetes from the Disko Bay area of West Greenland. Ophelia 16, 9–58 (1977).

    Google Scholar 

  • 106.

    Lambeck, R. H. D. & Valentijn, P. Distribution, dynamics and productivity of a colonizing (Polydora quadrilobata) and an established (P. Ligni) polydorid polychaete in lake grevelingen: An enclosed estuary in the SW Netherlands. Netherlands. J. Sea Res. 21, 143–158 (1987).

  • 107.

    Mahaut, M. L. Modélisation à l’état stable du cycle du carbone dans le réseau trophique profond de la Terrasse de Meriadzek (Golfe de Gascogne). PhD Thesis. (Université de Paris VI, 1991).

  • 108.

    Vinogradov, A. P. The elementary chemical composition of marine organisms. J. Am. Chem. Soc. 77, 1712–1713 (1953).

  • 109.

    Sibuet, M. & Lawrence, J. M. Organic content and biomass of abyssal holothuroids (Echinodermata) from the Bay of Biscay. Mar. Biol. 65, 143–147 (1981).

    Google Scholar 


  • Source: Ecology - nature.com

    Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion

    The biodiversity leader who is fighting for nature amid a pandemic