in

Functional kleptoplasts intermediate incorporation of carbon and nitrogen in cells of the Sacoglossa sea slug Elysia viridis

  • 1.

    Rumpho, M. E., Dastoor, F. P., Manhart, J. R. & Lee, J. In The Structure and Function of Plastids (eds Robert R. Wise & J. Kenneth Hoober) 451-473 (Springer Netherlands, 2007).

  • 2.

    Kawaguti, S. & Yamasu, T. Electron microscopy on the symbiosis between an elysioid gastropod and chloroplasts from a green alga. Biol. J. Okayama Univ. II, 57–64 (1965).

    Google Scholar 

  • 3.

    Hinde, R. & Smith, D. C. Persistence of Functional Chloroplasts in Elysia viridis (Opisthobranchia, Sacoglossa). Nat. N. Biol. 239, 30–31 (1972).

    CAS  Google Scholar 

  • 4.

    Trench, R. K. & Ohlhorst, S. The stability of chloroplasts from siphonaceous algae in symbiosis with sacoglossan molluscs. N. Phytol. 76, 99–109 (1976).

    CAS  Google Scholar 

  • 5.

    Mujer, C. V., Andrews, D. L., Manhart, J. R., Pierce, S. K. & Rumpho, M. E. Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica. PNAS 93, 12333–12338 (1996).

    ADS  CAS  PubMed  Google Scholar 

  • 6.

    Cruz, S., Calado, R., Serôdio, J. & Cartaxana, P. Crawling leaves: Photosynthesis in sacoglossan sea slugs. J. Exp. Bot. 64, 3999–4009 (2013).

    CAS  PubMed  Google Scholar 

  • 7.

    Händeler, K., Grzymbowski, Y. P., Krug, P. J. & Wägele, H. Functional chloroplasts in metazoan cells – a unique evolutionary strategy in animal life. Front. Zool. 6, 28 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Gustafson, D. E., Stoecker, D. K., Johnson, M. D., Van Heukelem, W. F. & Sneider, K. Cryptophyte algae are robbed of their organelles by the marine ciliate Mesodinium rubrum. Nature 405, 1049–1052 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 9.

    Bernhard, J. M. & Bowser, S. S. Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth-Sci. Rev. 46, 149–165 (1999).

    ADS  CAS  Google Scholar 

  • 10.

    Hansen, P. J. et al. Photoregulation in a Kleptochloroplastidic Dinoflagellate, Dinophysis acuta. Front. Microbiol. 7, 785 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 11.

    Van Steenkiste, N. W. L. et al. A new case of kleptoplasty in animals: Marine flatworms steal functional plastids from diatoms. Sci. Adv. 5, eaaw4337 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Dorrell, R. G. & Howe, C. J. What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J. Cell Sci. 125, 1865–1875 (2012).

    CAS  PubMed  Google Scholar 

  • 13.

    Cartaxana, P., Trampe, E., Kühl, M. & Cruz, S. Kleptoplast photosynthesis is nutritionally relevant in the sea slug Elysia viridis. Sci. Rep. 7, 7714 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Hinde, R. & Smith, D. C. The role of photosynthesis in the nutrition of the mollusc Elysia viridis. Biol. J. Linn. Soc. 7, 161–171 (1975).

    Google Scholar 

  • 15.

    Christa, G. et al. Plastid-bearing sea slugs fix CO2 in the light but do not require photosynthesis to survive. Proc. R. Soc. B Biol. Sci. 281, 20132493 (2014).

    Google Scholar 

  • 16.

    Kopp, C. et al. Subcellular investigation of photosynthesis-driven carbon assimilation in the symbiotic reef coral Pocillopora damicornis. mBio 6, e02299–02214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    LeKieffre, C. et al. Assimilation, translocation, and utilization of carbon between photosynthetic symbiotic dinoflagellates and their planktic foraminifera host. Mar. Biol. 165, 104 (2018).

    Google Scholar 

  • 18.

    Laetz, E. M. J., Moris, V. C., Moritz, L., Haubrich, A. N. & Wägele, H. Photosynthate accumulation in solar-powered sea slugs – starving slugs survive due to accumulated starch reserves. Front. Zool. 14, 4 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Laetz, E. M. J., Rühr, P. T., Bartolomaeus, T., Preisfeld, A. & Wägele, H. Examining the retention of functional kleptoplasts and digestive activity in sacoglossan sea slugs. Org. Div. Evol. 17, 87–99 (2017).

    Google Scholar 

  • 20.

    Trench, R. K., Boyle, J. E., Smith, D. C. & John Laker, H. The association between chloroplasts of Codium fragile and the mollusc Elysia viridis III. Movement of photosynthetically fixed 14C in tissues of intact living E. viridis and in Tridachia crispata. Proc. R. Soc. B Biol. Sci. 185, 453–464 (1974).

    ADS  CAS  Google Scholar 

  • 21.

    Trench, R. K., Greene, R. W. & Bystrom, B. G. Chloroplasts as functional organelles in animal tissues. J. Cell Biol. 42, 404–417 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Teugels, B., Bouillon, S., Veuger, B., Middelburg, J. J. & Koedam, N. Kleptoplasts mediate nitrogen acquisition in the sea slug Elysia viridis. Aquat. Biol. 4, 15–21 (2008).

    Google Scholar 

  • 23.

    Trench, R. K., Elizabeth, J. B., Smith, D. C. & John Laker, H. The association between chloroplasts of Codium fragile and the mollusc Elysia viridis II. Chloroplast ultrastructure and photosynthetic carbon fixation in E. viridis. Proc. R. Soc. B Biol. Sci. 184, 63–81 (1973).

    ADS  CAS  Google Scholar 

  • 24.

    Jensen, K. R. Anantomy of some Indo-Pacific Elysiidae (Opisthobranchia: Sacoglossa (=Ascoglossa)), with a discussion of the generic division and phylogeny J. Moll. Stud. 58, 257–296 (1992).

    Google Scholar 

  • 25.

    Klussmann-Kolb, A. Comparative investigation of the genital systems in the Opisthobranchia (Mollusca, Gastropoda) with special emphasis on the nidamental glandular system. Zoomorphology 120, 215–235 (2001).

    Google Scholar 

  • 26.

    Wägele, M. & Johnsen, G. Observations on the histology and photosynthetic performance of “solar-powered” opisthobranchs (Mollusca, Gastropoda, Opisthobranchia) containing symbiotic chloroplasts or zooxanthellae. Org. Div. Evol. 1, 193–210 (2001).

    Google Scholar 

  • 27.

    Wägele, H., Stemmer, K., Burghardt, I. & Händeler, K. Two new sacoglossan sea slug species (Opisthobranchia, Gastropoda): Ercolania annelyleorum sp. nov. (Limapontioidea) and Elysia asbecki sp. nov. (Plakobranchoidea), with notes on anatomy, histology and biology. Zootaxa, 1–28 (2010).

  • 28.

    Brown, A. P., Slabas, A. R. & Rafferty, J. B. In Lipids in Photosynthesis: Essential and Regulatory Functions (eds Hajime Wada & Norio Murata) 11-34 (Springer Netherlands, 2009).

  • 29.

    Kelly, J. R. & Scheibling, R. E. Fatty acids as dietary tracers in benthic food webs. Mar. Ecol. Prog. Ser. 446, 1–22 (2012).

    ADS  CAS  Google Scholar 

  • 30.

    Zhukova, N. V. Lipid classes and fatty acid composition of the tropical nudibranch mollusks Chromodoris sp. and Phyllidia coelestis. Lipids 42, 1169–1175 (2007).

    CAS  PubMed  Google Scholar 

  • 31.

    Zhukova, N. V. Lipids and fatty acids of nudibranch mollusks: potential sources of bioactive compounds. Mar. drugs 12, 4578–4592 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    da Costa, E. et al. Decoding bioactive polar lipid profile of the macroalgae Codium tomentosum from a sustainable IMTA system using a lipidomic approach. Algal. Research 12, 388–397 (2015).

    Google Scholar 

  • 33.

    Monroig, Ó., Tocher, R. D. & Navarro, C. J. Biosynthesis of polyunsaturated fatty acids in marine invertebrates: recent advances in molecular mechanisms. Mar. Drugs 11, 3998–4018 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 34.

    Barnathan, G. Non-methylene-interrupted fatty acids from marine invertebrates: Occurrence, characterization and biological properties. Biochimie 91, 671–678 (2009).

    CAS  PubMed  Google Scholar 

  • 35.

    Koo, A. J. K., Ohlrogge, J. B. & Pollard, M. On the export of fatty acids from the chloroplast. J. Biol. Chem. 279, 16101–16110 (2004).

    CAS  PubMed  Google Scholar 

  • 36.

    Liu, B. & Benning, C. Lipid metabolism in microalgae distinguishes itself. Curr. Opin. Biotech. 24, 300–309 (2013).

    CAS  PubMed  Google Scholar 

  • 37.

    Pelletreau, K. N., Weber, A. P. M., Weber, K. L. & Rumpho, M. E. Lipid accumulation during the establishment of kleptoplasty in Elysia chlorotica. PLoS One 9, e97477 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 38.

    van Wijk, K. J. & Felix, K. Plastoglobuli: Plastid microcompartments with integrated functions in metabolism, plastid developmental transitions, and environmental adaptation. Ann. Rev. Plant. Biol. 68, 253–289 (2017).

    Google Scholar 

  • 39.

    Reiss, P. M., Pierce, S. K. & Bishop, S. H. Glutamate dehydrogenases from tissues of the ribbed mussel Modiolus demissus: ADP activation and possible physiological significance. J. Exp. Zool. 202, 253–257 (1977).

    CAS  PubMed  Google Scholar 

  • 40.

    Sadok, S., Uglow, R. & Haswell, S. Glutamate dehydrogenase activity in Mytilus edulis: The effect of hyperammonia. Vie Milieu 51, 6 (2001).

    Google Scholar 

  • 41.

    Staehelin, L. A. & Moore, I. The Plant Golgi Apparatus: Structure, Functional Organization and Trafficking Mechanisms. Ann. Rev. Plant. Physiol. Plant Mol. Biol. 46, 261–288 (1995).

    CAS  Google Scholar 

  • 42.

    Harrison, P. J., Waters, R. E. & Taylor, F. J. R. A broad spectrum artificial sea water medium for coastal and open ocean phytoplankton. J. Phycol. 16, 28–35 (1980).

    Google Scholar 

  • 43.

    Meziane, T., d’ Agata, F. & Lee, S. Fate of mangrove organic matter along a subtropical estuary: small-scale exportation and contribution to the food of crab communities. Mar. Ecol. Prog. Ser. 312, 15–27 (2006).

    ADS  CAS  Google Scholar 

  • 44.

    Gladyshev, M. I., Sushchik, N. N., Kalachova, G. S. & Makhutova, O. N. Stable isotope composition of fatty acids in organisms of different trophic levels in the Yenisei river. PLoS One 7, e34059 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion

    The biodiversity leader who is fighting for nature amid a pandemic