in

Using larval barcoding to estimate stomatopod species richness at Lizard Island, Australia for conservation monitoring

  • 1.

    Airoldi, L., Balata, D. & Beck, M. W. The gray zone: relationships between habitat loss and marine diversity and their applications in conservation. J. Exp. Mar. Biol. Ecol. 366, 8–15 (2008).

    Google Scholar 

  • 2.

    Sanders, H. L. Marine Benthic Diversity: a comparative study. Am. Nat. 102, 243–282 (1968).

    Google Scholar 

  • 3.

    May, R. M. The future of biological diversity in a crowed world. Curr. Sci. 82, 1325–1331 (2002).

    Google Scholar 

  • 4.

    Costello, M. J. et al. A census of marine biodiversity knowledge, resources, and future challenges. PLoS One 5, (2010).

  • 5.

    Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202 (2012).

    CAS  PubMed  Google Scholar 

  • 6.

    Mikkelsen, P. & Cracraft, J. Marine biodiversity and the need for systematic inventories. Bull. Mar. Sci. 69, 525–534 (2001).

    Google Scholar 

  • 7.

    Cronin, T. W., Marshall, N. J. & Caldwell, R. L. Spectral tuning and the visual ecology of mantis shrimps. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 1263–1267 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Feller, K. D., Cohen, J. H. & Cronin, T. W. Seeing double: visual physiology of double-retina eye ontogeny in stomatopod crustaceans. J. Comp. Physiol. A Neuroethol. Sensory, Neural. Behav. Physiol. 201, 331–339 (2015).

    Google Scholar 

  • 9.

    Daly, I. M. et al. Dynamic polarization vision in mantis shrimps. Nat. Commun. 7, 1–9 (2016).

    Google Scholar 

  • 10.

    Porter, M. L., Zhang, Y., Desai, S., Caldwell, R. L. & Cronin, T. W. Evolution of anatomical and physiological specialization in the compound eyes of stomatopod crustaceans. J. Exp. Biol. 213, 3473–3486 (2010).

    CAS  PubMed  Google Scholar 

  • 11.

    Feller, K. D. et al. Long-wavelength reflecting filters found in the larval retinas of one mantis shrimp family report long-wavelength reflecting filters found in the larval retinas of one mantis shrimp family (Nannosquillidae). Curr. Biol. (2019).

  • 12.

    Ahyong, S. T. Revision of the Australian stomatopod Crustacea. Rec Aust. Museum, Suppl. 26, 1–326 (2001).

    Google Scholar 

  • 13.

    Barber, P. & Boyce, S. L. Estimating diversity of Indo-Pacific coral reef stomatopods through DNA barcoding of stomatopod larvae. Proc. R. Soc. B Biol. Sci. 273, 2053–2061 (2006).

    CAS  Google Scholar 

  • 14.

    Barber, P. H., Palumbi, S. R., Erdmann, M. V. & Moosa, M. K. Sharp genetic breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport: Patterns, causes, and consequences. Mol. Ecol. 11, 659–674 (2002).

    CAS  PubMed  Google Scholar 

  • 15.

    Tang, R. W. K., Yau, C. & Ng, W. C. Identification of stomatopod larvae (Crustacea: Stomatopoda) from Hong Kong waters using DNA barcodes. Mol. Ecol. Resour. 10, 439–448 (2010).

    CAS  PubMed  Google Scholar 

  • 16.

    Hu, G. & Zhang, Q. Seasonal variations in macrobenthic taxonomic diversity and the application of taxonomic distinctness indices in Bohai Bay, northern China. Ecol. Indic. 71, 181–190 (2016).

    Google Scholar 

  • 17.

    Leonard, D. R. P., Clarke, K. R., Somerfield, P. J. & Warwick, R. M. The application of an indicator based on taxonomic distinctness for UK marine biodiversity assessments. J. Environ. Manag. 78, 52–62 (2006).

    CAS  Google Scholar 

  • 18.

    Feller, K. D. & Cronin, T. W. Hiding opaque eyes in transparent organisms: a potential role for larval eyeshine in stomatopod crustaceans. J. Exp. Biol. 217, 3263–3273 (2014).

    CAS  PubMed  Google Scholar 

  • 19.

    Barber, P. H. & Erdmann, M. V. Molecular systematics of the gonodactylidae (stomatopoda) using mitochondrial cytochrome oxidase C (Subunit 1) DNA sequence data. J. Crustac. Biol. 20, 20–36 (2000).

    Google Scholar 

  • 20.

    Feller, K. D., Cronin, T. W., Ahyong, S. T. & Porter, M. I. Morphological and molecular description of the late-stage larvae of alima leach, 1817 (Crustacea: Stomatopoda) from lizard island Australia. Zootaxa 3722, 22–32 (2013).

    PubMed  Google Scholar 

  • 21.

    Barber, A. P. H. et al. Rapid recovery of genetic diversity of stomatopod populations on Krakatau: temporal and spatial scales of marine larval dispersal. Proc. Biol. Sci. 269, 1591–1597 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Costa, F. O. et al. Biological identifications through DNA barcodes: the case of the Crustacea. Can. J. Fish. Aquat. Sci. 64, 272–295 (2007).

    CAS  Google Scholar 

  • 23.

    Plaisance, L., Knowlton, N., Paulay, G. & Meyer, C. Reef-associated crustacean fauna: biodiversity estimates using semi-quantitative sampling and DNA barcoding. Coral Reefs 28, 977–986 (2009).

    ADS  Google Scholar 

  • 24.

    Lotze, H. K., Coll, M., Magera, A. M., Ward-Paige, C. & Airoldi, L. Recovery of marine animal populations and ecosystems. Trends Ecol. Evol. 26, 595–605 (2011).

    PubMed  Google Scholar 

  • 25.

    Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 26.

    Dingle, H. Ontogenetic changes in phototaxis and thigmokinesis in stomatopod larvae. Crustaceana 16, 108–110 (1969).

    Google Scholar 

  • 27.

    Kearse, M. et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gatew. Comput. Environ. Work. GCE 2010 (2010).

  • 29.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Van Der Wal, C., Ahyong, S. T., Ho, S. Y. W. & Lo, N. The evolutionary history of stomatopoda (Crustacea: Malacostraca) inferred from molecular data. PeerJ 5, e3844 (2017).

    Google Scholar 

  • 31.

    Rambaut, A. FigTree, a graphical viewer of phylogenetic trees. (2007).

  • 32.

    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).

    CAS  PubMed  Google Scholar 

  • 34.

    Meier, R., Shiyang, K., Vaidya, G. & Ng, P. K. L. DNA barcoding and taxonomy in diptera: a tale of high intraspecific variability and low identification success. Syst. Biol. 55, 715–728 (2006).

    PubMed  Google Scholar 

  • 35.

    Maynou, F., Abelló, P. & Sartor, P. A. Review of the fisheries biology of the mantis shrimp, Squilla mantis (L., 1758) (Stomatopoda, Squillidae ) in the Mediterranean. Crustaceana 77, 1081–1099 (2001).

    Google Scholar 

  • 36.

    Reaka, M. L. Lunar and tidal periodicity of molting and reproduction in stomatopod crustacea: a selfish herd hypothesis. Biol. Bull. 150, 468–490 (1976).

    CAS  PubMed  Google Scholar 

  • 37.

    McKinnon, A. D. et al. Rapid changes in shelf waters and pelagic communities on the southern Northwest Shelf, Australia, following a tropical cyclone. Cont. Shelf Res. 23, 93–111 (2003).

    ADS  Google Scholar 

  • 38.

    Morgan, S. G. & Goy, J. W. Reproduction and Larval Development of the Mantis Shrimp Gonodactylus bredini (Crustacea: Stomatopoda) Maintained in the Laboratory. Source J. Crustac. Biol. 7, 595–618 (1987).

    Google Scholar 

  • 39.

    Provenzano, J. & Manning, R. B. Studies on development of stomatopod crustacea II. The later larval stages of Gonodactylus oerstedii Hansen reared in the laboratory. Bull. Mar. Sci. 28, 297–315 (1978).

    Google Scholar 

  • 40.

    Caldwell, R. L. Interspecific Interactions among Selected Intertidal Stomatopods. In Behavioral Adaptation to Intertidal Life 371–385 (Springer US, 1988).

  • 41.

    Caldwell, R. L. & Dingle, H. Stomatopods. Sci. Am. 234, 80–89 (1976).

    ADS  Google Scholar 

  • 42.

    Kodama, K., Shimizu, T., Yamakawa, T. & Aoki, I. Reproductive biology of the female Japanese mantis shrimp Oratosquilla oratoria (Stomatopoda) in relation to changes in the seasonal pattern of larval occurrence in Tokyo Bay Japan. Fish. Sci. 70, 734–745 (2004).

    CAS  Google Scholar 

  • 43.

    Neigel, J., Domingo, A. & Stake, J. DNA barcoding as a tool for coral reef conservation. Coral Reefs 26, 487–499 (2007).

    ADS  Google Scholar 

  • 44.

    Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: what are we missing?. PLoS ONE 6, e25026 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Vilgalys, R. Taxonomic misidentification in public DNA databases. New Phytol. 160, 4–5 (2003).

    CAS  Google Scholar 

  • 46.

    Meiklejohn, K. A., Damaso, N. & Robertson, J. M. Assessment of BOLD and GenBank—their accuracy and reliability for the identification of biological materials. PLoS ONE 14, e0217084 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Nelson, L. A., Wallman, J. F. & Dowton, M. Using COI barcodes to identify forensically and medically important blowflies. Med. Vet. Entomol. 21, 44–52 (2007).

    CAS  PubMed  Google Scholar 

  • 48.

    Rubinoff, D. Utility of mitochondrial DNA barcodes in species conservation. Conserv. Biol. 20, 1026–1033 (2006).

    PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Solarizing networks

    Light limitation regulates the response of autumn terrestrial carbon uptake to warming