in

Unraveling ecosystem functioning in intertidal soft sediments: the role of density-driven interactions

  • 1.

    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article  Google Scholar 

  • 2.

    Douglas, E. J. et al. Macrofaunal functional diversity provides resilience to nutrient enrichment in coastal sediments. Ecosystems 20, 1324–1336 (2017).

    CAS  Article  Google Scholar 

  • 3.

    Edgar, G. J. & Barrett, N. S. Effects of catchment activities on macrofaunal assemblages in Tasmanian estuaries. Estuar. Coast. Shelf Sci. 50, 639–654 (2000).

    ADS  Article  Google Scholar 

  • 4.

    Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Hewitt, J. E., Thrush, S. F., Dayton, P. K. & Bonsdorff, E. The effect of spatial and temporal heterogeneity on the design and analysis of empirical studies of scale-dependent systems. Am. Nat. 169, 398–408 (2007).

    Article  Google Scholar 

  • 6.

    Cadenasso, M. L., Pickett, S. T. A., Weathers, K. C. & Jones, C. G. A framework for a theory of ecological boundaries. Bioscience 53, 750 (2003).

    Article  Google Scholar 

  • 7.

    Lohrer, A. M. et al. Biogenic habitat transitions influence facilitation in a marine soft-sediment ecosystem. Ecology 94, 136–145 (2013).

    Article  Google Scholar 

  • 8.

    Schenone, S., O’Meara, T. A. & Thrush, S. F. Non-linear effects of macrofauna functional trait interactions on biogeochemical fluxes in marine sediments change with environmental stress. Mar. Ecol. Prog. Ser. 624, 13–21 (2019).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Thrush, S. F., Pridmore, R. D., Hewitt, J. E. & Cummings, V. J. Adult infauna as facilitators of colonization on intertidal sandflats. J. Exp. Mar. Biol. Ecol. 159, 253–265 (1992).

    Article  Google Scholar 

  • 10.

    Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).

    Article  Google Scholar 

  • 11.

    Mermillod-Blondin, F., Rosenberg, R., François-Carcaillet, F., Norling, K. & Mauclaire, L. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquat. Microb. Ecol. 36, 271–284 (2004).

    Article  Google Scholar 

  • 12.

    Dornhoffer, T., Waldbusser, G. & Meile, C. Modeling lugworm irrigation behavior effects on sediment nitrogen cycling. Mar. Ecol. Prog. Ser. 534, 121–134 (2015).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Braeckman, U. et al. Role of macrofauna functional traits and density in biogeochemical fluxes and bioturbation. Mar. Ecol. Prog. Ser. 399, 173–186 (2010).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Banta, G. T., Holmer, M., Jensen, M. H. & Kristensen, E. Effects of two polychaete worms, Nereis diversicolor and Arenicola marina, on aerobic and anaerobic decomposition in a sandy marine sediment. Aquat. Microb. Ecol. 19, 189–204 (1999).

    Article  Google Scholar 

  • 15.

    Woodin, S. A. et al. Same pattern, different mechanism: Locking onto the role of key species in seafloor ecosystem process. Sci. Rep. https://doi.org/10.1038/srep26678 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Woodin, S. A., Wethey, D. S., Hewitt, J. E. & Thrush, S. F. Small scale terrestrial clay deposits on intertidal sandflats: Behavioral changes and productivity reduction. J. Exp. Mar. Biol. Ecol. 413, 184–191 (2012).

    Article  Google Scholar 

  • 17.

    Thrush, S. F., Hewitt, J. E. & Pridmore, R. D. Patterns in the spatial arrangements of polychaetes and bivalves in intertidal sandflats. Mar. Biol. 102, 529–535 (1989).

    Article  Google Scholar 

  • 18.

    Pridmore, R. D., Thrush, S. F., Hewitt, J. E. & Roper, D. S. Macrobenthic community composition of six intertidal sandflats in Manukau Harbour, New Zealand Macrobenthic community composition of six intertidal sandflats in Manukau Harbour, New Zealand. N. Z. J. Mar. Freshw. Res. 24, 81–96 (1990).

    Article  Google Scholar 

  • 19.

    Turner, S. J. et al. Are soft-sediment communities stable? An example from a windy harbour. Mar. Ecol. Prog. Ser. 120, 219–230 (1995).

    ADS  Article  Google Scholar 

  • 20.

    Zajac, R. N. et al. Responses of infaunal populations to benthoscape structure and the potential importance of transition zones. Limnol. Oceanogr. 48, 829–842 (2003).

    ADS  Article  Google Scholar 

  • 21.

    Kobayashi, G., Goto, R., Takano, T. & Kojima, S. Molecular phylogeny of Maldanidae (Annelida): Multiple losses of tube-capping plates and evolutionary shifts in habitat depth. Mol. Phylogenet. Evol. 127, 332–344 (2018).

    Article  Google Scholar 

  • 22.

    Volkenborn, N. et al. Intermittent bioirrigation and oxygen dynamics in permeable sediments: An experimental and modeling study of three tellinid bivalves. J. Mar. Res. 70, 794–823 (2012).

    CAS  Article  Google Scholar 

  • 23.

    Waldbusser, G. G., Marinelli, R. L., Whitlatch, R. B. & Visscher, P. T. The effects of infaunal biodiversity on biogeochemistry of coastal marine sediments. Limnol. Ocean. 49, 1482–1492 (2004).

    CAS  Article  Google Scholar 

  • 24.

    Walker, B. H. Biodiversity and ecological redundancy. Conserv. Biol. 6, 18–23 (1992).

    Article  Google Scholar 

  • 25.

    Volkenborn, N., Polerecky, L., Wethey, D. S. & Woodin, S. A. Oscillatory porewater bioadvection in marine sediments induced by hydraulic activities of Arenicola marina. Limnol. Oceanogr. 55, 1231–1247 (2010).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Thrush, S. F. et al. Changes in the location of biodiversity–ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading. Proc. R. Soc. B. Biol. Sci. https://doi.org/10.1098/rspb.2016.2861 (2017).

    Article  Google Scholar 

  • 27.

    O’Meara, T., Gibbs, E. & Thrush, S. F. Rapid organic matter assay of organic matter degradation across depth gradients within marine sediments. Methods Ecol. Evol. 9, 245–253 (2018).

    Article  Google Scholar 

  • 28.

    Kana, T. M. et al. Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal. Chem. 66, 4166–4170 (1994).

    CAS  Article  Google Scholar 

  • 29.

    Thrush, S. F. et al. Changes in the location of biodiversity–ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2016.2861 (2017).

    Article  Google Scholar 

  • 30.

    Legendre, P. & Legendre, L. F. J. Numerical Ecology (Elsevier, New York, 2012).

    Google Scholar 

  • 31.

    Grömping, U. Relative importance for linear regression in R: The package relaimpo. J. Stat. Softw. 20, 17 (2006).

    Google Scholar 

  • 32.

    Team RC. R: A language and environment for statistical computing. 2013.


  • Source: Ecology - nature.com

    Differential impact of thermal and physical permafrost disturbances on High Arctic dissolved and particulate fluvial fluxes

    Putting wind dispersal in context