Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).
Douglas, E. J. et al. Macrofaunal functional diversity provides resilience to nutrient enrichment in coastal sediments. Ecosystems 20, 1324–1336 (2017).
Edgar, G. J. & Barrett, N. S. Effects of catchment activities on macrofaunal assemblages in Tasmanian estuaries. Estuar. Coast. Shelf Sci. 50, 639–654 (2000).
Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).
Hewitt, J. E., Thrush, S. F., Dayton, P. K. & Bonsdorff, E. The effect of spatial and temporal heterogeneity on the design and analysis of empirical studies of scale-dependent systems. Am. Nat. 169, 398–408 (2007).
Cadenasso, M. L., Pickett, S. T. A., Weathers, K. C. & Jones, C. G. A framework for a theory of ecological boundaries. Bioscience 53, 750 (2003).
Lohrer, A. M. et al. Biogenic habitat transitions influence facilitation in a marine soft-sediment ecosystem. Ecology 94, 136–145 (2013).
Schenone, S., O’Meara, T. A. & Thrush, S. F. Non-linear effects of macrofauna functional trait interactions on biogeochemical fluxes in marine sediments change with environmental stress. Mar. Ecol. Prog. Ser. 624, 13–21 (2019).
Thrush, S. F., Pridmore, R. D., Hewitt, J. E. & Cummings, V. J. Adult infauna as facilitators of colonization on intertidal sandflats. J. Exp. Mar. Biol. Ecol. 159, 253–265 (1992).
Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).
Mermillod-Blondin, F., Rosenberg, R., François-Carcaillet, F., Norling, K. & Mauclaire, L. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquat. Microb. Ecol. 36, 271–284 (2004).
Dornhoffer, T., Waldbusser, G. & Meile, C. Modeling lugworm irrigation behavior effects on sediment nitrogen cycling. Mar. Ecol. Prog. Ser. 534, 121–134 (2015).
Braeckman, U. et al. Role of macrofauna functional traits and density in biogeochemical fluxes and bioturbation. Mar. Ecol. Prog. Ser. 399, 173–186 (2010).
Banta, G. T., Holmer, M., Jensen, M. H. & Kristensen, E. Effects of two polychaete worms, Nereis diversicolor and Arenicola marina, on aerobic and anaerobic decomposition in a sandy marine sediment. Aquat. Microb. Ecol. 19, 189–204 (1999).
Woodin, S. A. et al. Same pattern, different mechanism: Locking onto the role of key species in seafloor ecosystem process. Sci. Rep. https://doi.org/10.1038/srep26678 (2016).
Woodin, S. A., Wethey, D. S., Hewitt, J. E. & Thrush, S. F. Small scale terrestrial clay deposits on intertidal sandflats: Behavioral changes and productivity reduction. J. Exp. Mar. Biol. Ecol. 413, 184–191 (2012).
Thrush, S. F., Hewitt, J. E. & Pridmore, R. D. Patterns in the spatial arrangements of polychaetes and bivalves in intertidal sandflats. Mar. Biol. 102, 529–535 (1989).
Pridmore, R. D., Thrush, S. F., Hewitt, J. E. & Roper, D. S. Macrobenthic community composition of six intertidal sandflats in Manukau Harbour, New Zealand Macrobenthic community composition of six intertidal sandflats in Manukau Harbour, New Zealand. N. Z. J. Mar. Freshw. Res. 24, 81–96 (1990).
Turner, S. J. et al. Are soft-sediment communities stable? An example from a windy harbour. Mar. Ecol. Prog. Ser. 120, 219–230 (1995).
Zajac, R. N. et al. Responses of infaunal populations to benthoscape structure and the potential importance of transition zones. Limnol. Oceanogr. 48, 829–842 (2003).
Kobayashi, G., Goto, R., Takano, T. & Kojima, S. Molecular phylogeny of Maldanidae (Annelida): Multiple losses of tube-capping plates and evolutionary shifts in habitat depth. Mol. Phylogenet. Evol. 127, 332–344 (2018).
Volkenborn, N. et al. Intermittent bioirrigation and oxygen dynamics in permeable sediments: An experimental and modeling study of three tellinid bivalves. J. Mar. Res. 70, 794–823 (2012).
Waldbusser, G. G., Marinelli, R. L., Whitlatch, R. B. & Visscher, P. T. The effects of infaunal biodiversity on biogeochemistry of coastal marine sediments. Limnol. Ocean. 49, 1482–1492 (2004).
Walker, B. H. Biodiversity and ecological redundancy. Conserv. Biol. 6, 18–23 (1992).
Volkenborn, N., Polerecky, L., Wethey, D. S. & Woodin, S. A. Oscillatory porewater bioadvection in marine sediments induced by hydraulic activities of Arenicola marina. Limnol. Oceanogr. 55, 1231–1247 (2010).
Thrush, S. F. et al. Changes in the location of biodiversity–ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading. Proc. R. Soc. B. Biol. Sci. https://doi.org/10.1098/rspb.2016.2861 (2017).
O’Meara, T., Gibbs, E. & Thrush, S. F. Rapid organic matter assay of organic matter degradation across depth gradients within marine sediments. Methods Ecol. Evol. 9, 245–253 (2018).
Kana, T. M. et al. Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal. Chem. 66, 4166–4170 (1994).
Thrush, S. F. et al. Changes in the location of biodiversity–ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2016.2861 (2017).
Legendre, P. & Legendre, L. F. J. Numerical Ecology (Elsevier, New York, 2012).
Grömping, U. Relative importance for linear regression in R: The package relaimpo. J. Stat. Softw. 20, 17 (2006).
Team RC. R: A language and environment for statistical computing. 2013.
Source: Ecology - nature.com