in

Rapid adaptation to invasive predators overwhelms natural gradients of intraspecific variation

  • 1.

    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 2.

    Mack, R. N. et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).

    Google Scholar 

  • 3.

    Lockwood, J. L., Hoopes, M. F. & Marchetti, M. P. Invasion Ecology (John Wiley & Sons, 2013).

  • 4.

    Sih, A. et al. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119, 610–621 (2010).

    Google Scholar 

  • 5.

    Cox, J. G. & Lima, S. L. Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21, 674–680 (2006).

    PubMed  Google Scholar 

  • 6.

    Skelly, D. K. & Freidenburg, L. K. Effects of beaver on the thermal biology of an amphibian. Ecol. Lett. 3, 483–486 (2000).

    Google Scholar 

  • 7.

    Nunes, A. L., Orizaola, G., Laurila, A. & Rebelo, R. Rapid evolution of constitutive and inducible defenses against an invasive predator. Ecology 95, 1520–1530 (2014).

    PubMed  Google Scholar 

  • 8.

    Phillips, B. L. & Shine, R. An invasive species induces rapid adaptive change in a native predator: cane toads and black snakes in Australia. Proc. Biol. Sci. 273, 1545–1550 (2006).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Cattau, C. E., Fletcher, R. J. Jr, Kimball, R. T., Miller, C. W. & Kitchens, W. M. Rapid morphological change of a top predator with the invasion of a novel prey. Nat. Ecol. Evol. 2, 108 (2018).

    PubMed  Google Scholar 

  • 10.

    Stuart, Y. E. et al. Rapid evolution of a native species following invasion by a congener. Science 346, 463–466 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    Carroll, S. P. et al. And the beak shall inherit–evolution in response to invasion. Ecol. Lett. 8, 944–951 (2005).

    Google Scholar 

  • 12.

    Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).

  • 13.

    Leger, E. A. & Goergen, E. M. Invasive Bromus tectorum alters natural selection in arid systems. J. Ecol. 105, 1509–1520 (2017).

    Google Scholar 

  • 14.

    Mooney, H. A. & Cleland, E. E. The evolutionary impact of invasive species. PNAS 98, 5446–5451 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • 15.

    Thawley, C. J., Goldy‐Brown, M., McCormick, G. L., Graham, S. P. & Langkilde, T. Presence of an invasive species reverses latitudinal clines of multiple traits in a native species. Glob. Change Biol. 25, 620–628 (2019).

    ADS  Google Scholar 

  • 16.

    Cenzer, M. L. Adaptation to an invasive host is driving the loss of a native ecotype. Evolution 70, 2296–2307 (2016).

    PubMed  Google Scholar 

  • 17.

    Berven, K. A. The genetic basis of altitudinal variation in the wood frog Rana sylvatica II. An experimental analysis of larval development. Oecologia 52, 360–369 (1982).

    ADS  PubMed  Google Scholar 

  • 18.

    Conover, D. O., Duffy, T. A. & Hice, L. A. The covariance between genetic and environmental influences across ecological gradients. Ann. NY Acad. Sci. 1168, 100–129 (2009).

    ADS  PubMed  Google Scholar 

  • 19.

    Kiesecker, J. M., Chivers, D. P., Anderson, M. & Blaustein, A. R. Effect of predator diet on life history shifts of red-legged frogs, Rana aurora. J. Chem. Ecol. 28, 1007–1015 (2002).

    CAS  PubMed  Google Scholar 

  • 20.

    Urban, M. C. et al. Microgeographic adaptation of Wood Frog tadpoles to an apex predator. Copeia 105, 451–461(2017).

    Google Scholar 

  • 21.

    Chivers, D. P., Kiesecker, J. M., Marco, A., Wildy, E. L. & Blaustein, A. R. Shifts in life history as a response to predation in western toads (Bufo boreas). J. Chem. Ecol. 25, 2455–2463 (1999).

    CAS  Google Scholar 

  • 22.

    De Block, M. & Stoks, R. Fitness effects from egg to reproduction: bridging the life history transition. Ecology 86, 185–197 (2005).

    Google Scholar 

  • 23.

    Relyea, R. A. Getting out alive: how predators affect the decision to metamorphose. Oecologia 152, 389–400 (2007).

    ADS  PubMed  Google Scholar 

  • 24.

    Burraco, P., Valdés, A. E. & Orizaola, G. Metabolic costs of altered growth trajectories across life transitions in amphibians. J. Anim. Ecol. 89, 855–866 (2020).

  • 25.

    Ficetola, G. F. & De Bernardi, F. Supplementation or in situ conservation? Evidence of local adaptation in the Italian agile frog Rana latastei and consequences for the management of populations. Anim. Conserv. 8, 33–40 (2005).

  • 26.

    Nentwig, W., Bacher, S., Kumschick, S., Pyšek, P. & Vilà, M. More than “100 worst” alien species in Europe. Biol. Invasions 20, 1611–1621 (2018).

    Google Scholar 

  • 27.

    Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection From The Global Invasive Species Database (Invasive Species Specialist Group, Auckland, 2000).

  • 28.

    Ficetola, G. F. et al. Early assessment of the impact of alien species: differential consequences of an invasive crayfish on adult and larval amphibians. Divers Distrib. 17, 1141–1151 (2011).

    Google Scholar 

  • 29.

    Gamradt, S. C. & Kats, L. B. Effect of introduced crayfish and mosquitofish on California newts. Conserv. Biol. 10, 1155–1162 (1996).

    Google Scholar 

  • 30.

    Cruz, M., Segurado, P., Sousa, M. & Rebelo, R. Collapse of the amphibian community of the Paul do Boquilobo Natural Reserve (central Portugal) after the arrival of the exotic American crayfish Procambarus clarkii. Herpetol. J. 18, 197–204 (2008).

    Google Scholar 

  • 31.

    Wells, K. D. The Ecology and Behavior of Amphibians. (University of Chicago Press, Chicago, 2007).

    Google Scholar 

  • 32.

    Levis, N. A. & Pfennig, D. W. (eds). in Seminars in Cell & Developmental Biology (Elsevier, 2019).

  • 33.

    Lo Parrino, E., Ficetola, G. F., Manenti, R. & Falaschi, M. Thirty years of invasion: the distribution of the invasive crayfish Procambarus clarkii in Italy. Biogeographia 35, 43–50 (2020).

    Google Scholar 

  • 34.

    Edge, C. B., Houlahan, J. E., Jackson, D. A. & Fortin, M. J. The response of amphibian larvae to environmental change is both consistent and variable. Oikos 125, 1700–1711 (2016).

    Google Scholar 

  • 35.

    Kern, P., Cramp, R. L. & Franklin, C. E. Physiological responses of ectotherms to daily temperature variation. J. Exp. Biol. 218, 3068–3076 (2015).

    PubMed  Google Scholar 

  • 36.

    Lanza, B., Andreone, F., Bologna, M. A., Corti, C. & Razzetti, E. Amphibia (Edizioni Calderini, 2007).

  • 37.

    Gillis, M. K. & Walsh, M. R. Rapid evolution mitigates the ecological consequences of an invasive species (Bythotrephes longimanus) in lakes in Wisconsin. Proc. Biol. Sci. 284, 20170814 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    Manenti, R., Bonelli, M., Scaccini, D., Binda, A. & Zugnoni, A. Austropotamobius pallipes reduction vs. Procambarus clarkii spreading: management implications. J. Nat. Conserv. 22, 586–591 (2014).

    Google Scholar 

  • 39.

    Hossie, T., Landolt K. & Murray, D. L. Determinants and co-expression of anti-predator responses in amphibian tadpoles: a meta-analysis. Oikos 126, 173–184 (2017).

  • 40.

    Relyea, R. A. The lasting effects of adaptive plasticity: predator-induced tadpoles become long-legged frogs. Ecology 82, 1947–1955 (2001).

    Google Scholar 

  • 41.

    Thawley, C. J. & Langkilde, T. Attracting unwanted attention: generalization of behavioural adaptation to an invasive predator carries costs. Anim. Behav. 123, 285–291 (2017).

    Google Scholar 

  • 42.

    Langkilde, T. Invasive fire ants alter behavior and morphology of native lizards. Ecology 90, 208–217 (2009).

    PubMed  Google Scholar 

  • 43.

    Wisenden, B. D. Chemically mediated strategies to counter predation. In: Sensory processing in aquatic environments, 236–251 (Springer, New York, 2003).

  • 44.

    Chivers, D. P., Mirza, R. S., Bryer, P. J. & Kiesecker, J. M. Threat-sensitive predator avoidance by slimy sculpins: understanding the importance of visual versus chemical information. Can. J. Zool. 79, 867–873 (2001).

    Google Scholar 

  • 45.

    Hettyey, A., Roelli, F., Thürlimann, N., Zürcher, A.-C. & Van Buskirk, J. Visual cues contribute to predator detection in anuran larvae. Biol. J. Linn. Soc. 106, 820–827 (2012).

    Google Scholar 

  • 46.

    Mathis, A. & Vincent, F. Differential use of visual and chemical cues in predator recognition and threat-sensitive predator-avoidance responses by larval newts (Notophthalmus viridescens). Can. J. Zool. 78, 1646–1652 (2000).

    CAS  Google Scholar 

  • 47.

    Kats, L. B. & Dill, L. M. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5, 361–394 (1998).

    Google Scholar 

  • 48.

    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation—a review and prospectus. Can. J. Zool. 68, 619–640 (1990).

    Google Scholar 

  • 49.

    Hettyey, A. et al. Naive tadpoles do not recognize recent invasive predatory fishes as dangerous. Ecology 97, 2975–2985 (2016).

    PubMed  Google Scholar 

  • 50.

    Gomez-Mestre, I. & Díaz-Paniagua, C. Invasive predatory crayfish do not trigger inducible defences in tadpoles. Proc. Biol. Sci. 278, 3364–3370 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Epp, K. J. & Gabor, C. R. Innate and learned predator recognition mediated by chemical signals in Eurycea nana. Ethology 114, 607–615 (2008).

    Google Scholar 

  • 52.

    Ferrari, M. C. O., Gonzalo, A., Messier, F. & Chivers, D. P. Generalization of learned predator recognition: an experimental test and framework for future studies. Proc. Biol. Sci. 274, 1853–1859 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 53.

    Davis, D. R., Epp, K. J. & Gabor, C. R. Predator generalization decreases the effect of introduced predators in the San Marcos Salamander, Eurycea nana. Ethology 118, 1191–1197 (2012).

    Google Scholar 

  • 54.

    Falaschi, M., Melotto, A., Manenti, R. & Ficetola, G. F. Invasive species and amphibian conservation. Herpetologica 76, 216–227 (2020).

  • 55.

    Wilson, E. A., Dudley, T. L. & Briggs, C. J. Shared behavioral responses and predation risk of anuran larvae and adults exposed to a novel predator. Biol. Invasions 20, 475–485 (2018).

    Google Scholar 

  • 56.

    Brown, G. E., Ferrari, M. C., Elvidge, C. K., Ramnarine, I. & Chivers, D. P. Phenotypically plastic neophobia: a response to variable predation risk. Proc. Biol. Sci. 280, 20122712 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Gherardi, F., Renai, B. & Corti, C. Crayfish predation on tadpoles: a comparison between a native (Austropotamobius pallipes) and an alien species (Procambarus clarkii). Bull. Fr. Pêche Piscic. 361, 659–668 (2001).

    Google Scholar 

  • 58.

    Levis, N. A., Isdaner, A. J. & Pfennig, D. W. Morphological novelty emerges from pre-existing phenotypic plasticity. Nat. Ecol. Evol. 2, 1289–1297 (2018).

    PubMed  Google Scholar 

  • 59.

    Auld, J. R., Agrawal, A. A. & Relyea, R. A. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. Biol. Sci. 277, 503–511 (2010).

    PubMed  Google Scholar 

  • 60.

    Richter‐Boix, A., Tejedo, M. & Rezende, E. L. Evolution and plasticity of anuran larval development in response to desiccation. A comparative analysis. Ecol. Evol. 1, 15–25 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 61.

    Gervasi, S. S. & Foufopoulos, J. Costs of plasticity: responses to desiccation decrease post-metamorphic immune function in a pond-breeding amphibian. Funct. Ecol. 22, 100–108 (2008).

    Google Scholar 

  • 62.

    Van Buskirk, J. & Relyea, R. A. Selection for phenotypic plasticity in Rana sylvatica tadpoles. Biol. J. Linn. Soc. 65, 301–328 (1998).

    Google Scholar 

  • 63.

    Capellan, E. & Nicieza, A. G. Trade-offs across life stages: does predator-induced hatching plasticity reduce anuran post-metamorphic performance? Evol. Ecol. 21, 445–458 (2007).

    Google Scholar 

  • 64.

    Ficetola, G. F. & De Bernardi, F. Trade-off between larval development rate and post-metamorphic traits in the frog Rana latastei. Evol. Ecol. 20, 143–158 (2006).

    Google Scholar 

  • 65.

    Vonesh, J. R. & Bolker, B. M. Compensatory larval responses shift trade‐offs associated with predator-induced hatching plasticity. Ecology 86, 1580–1591 (2005).

    Google Scholar 

  • 66.

    Capellan, E. & Nicieza, A. G. Non-equivalence of growth arrest induced by predation risk or food limitation: context-dependent compensatory growth in anuran tadpoles. J. Anim. Ecol. 76, 1026–1035 (2007).

    CAS  PubMed  Google Scholar 

  • 67.

    Székely, D. et al. How to recover from a bad start: size at metamorphosis affects growth and survival in a tropical amphibian. BMC Ecol. 20, 24 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 68.

    Álvarez, D. & Nicieza, A. G. Effects of induced variation in anuran larval development on postmetamorphic energy reserves and locomotion. Oecologia 131, 186–195 (2002).

    ADS  PubMed  Google Scholar 

  • 69.

    Clavero, M. & Garcia-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110 (2005).

    PubMed  Google Scholar 

  • 70.

    Sindaco, R. et al. in The IUCN Red List of Threatened Species 2009 (ed. IUCN) (2009).

  • 71.

    Ultsch, G., Bradford, D. & Freda, J. in Tadpoles: The Biology of Anuran Larvae (eds McDiarmid, R. W. & Altig, R.) 189–214 (The University of Chicago Press, Chicago, 1999).

  • 72.

    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 4, 170122 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 73.

    Ficetola, G. F., Siesa, M. E., Padoa-Schioppa, E. & De Bernardi, F. Wetland features, amphibian communities and distribution of the alien crayfish, Procambarus clarkii. Alytes 29, 75–87 (2012).

    Google Scholar 

  • 74.

    Manenti, R., Falaschi, M., Delle Monache, D., Marta, S. & Ficetola, G. F. Network-scale effects of invasive species on spatially-structured amphibian populations. Ecography 43, 119–127 (2020).

    Google Scholar 

  • 75.

    Gherardi, F. Crayfish invading Europe: the case study of Procambarus clarkii. Mar. Freshw. Behav. Physiol. 39, 175–191 (2006).

    Google Scholar 

  • 76.

    Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).

    Google Scholar 

  • 77.

    Cabrera-Guzmán, E., Crossland, M. R., Brown, G. P. & Shine, R. Larger body size at metamorphosis enhances survival, growth and performance of young cane toads (Rhinella marina). PLoS ONE 8, e70121 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 78.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 79.

    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed‐effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).

    Google Scholar 

  • 80.

    Semlitsch, R. D., Pickle, J., Parris, M. J. & Sage, R. D. Jumping performance and short-term repeatability of newly metamorphosed hybrid and parental leopard frogs (Rana sphenocephala and Rana blairi). Can. J. Zool. 77, 748–754 (1999).

    Google Scholar 

  • 81.

    Heinen, J. T. & Hammond, G. Antipredator behaviors of newly metamorphosed green frogs (Rana clamitans) and leopard frogs (R. pipiens) in encounters with eastern garter snakes (Thamnophis s. sirtalis). Am. Midl. Nat. 137, 136–144 (1997).

  • 82.

    Watkins, T. B. A quantitative genetic test of adaptive decoupling across metamorphosis for locomotor and life-history traits in the Pacific tree frog, Hyla regilla. Evolution 55, 1668–1677 (2001).

    CAS  PubMed  Google Scholar 

  • 83.

    Kaplan, R. H. Maternal effects, developmental plasticity, and life history evolution. An amphibian model. In: Maternal effects as adaptations (eds Mousseau, T. A. & Fox, C. W.). 244–260 (Oxford University Press, 1998).

  • 84.

    Rosseel, Y. Lavaan: an R package for structural equation modeling and more. Version 0. 5–12 (BETA). J. Stat. Softw. 48, 1–36 (2012).

    Google Scholar 

  • 85.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

  • 86.

    Breheny, P. & Burchett, W. visreg: Visualization of regression models. R J. 9, 56–71 (2017).

  • 87.

    Jussila, J., Toljamo, A., Makkonen, J., Kukkonen, H. & Kokko, H. Practical disinfection chemicals for fishing and crayfishing gear against crayfish plague transfer. Know. Manag. Aquat. Ec. 413, 02 (2014).

  • 88.

    Bosch, J. et al. Successful elimination of a lethal wildlife infectious disease in nature. Biol. Lett. 11, 20150874 (2015).

    PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Differential impact of thermal and physical permafrost disturbances on High Arctic dissolved and particulate fluvial fluxes

    Putting wind dispersal in context