in

Protecting endangered species in the USA requires both public and private land conservation

  • 1.

    Convention on Biological Diversity. Aichi biodiversity targets. Aichi Biodivers. Targets 9–10 https://www.cbd.int/sp/targets/ (2010).

  • 2.

    Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 1–7 (2016).

    Google Scholar 

  • 3.

    Joppa, L. N. & Pfaff, A. Global protected area impacts. Proc. R. Soc. B Biol. Sci. 278, 1633–1638 (2011).

    Article  Google Scholar 

  • 4.

    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).

    Article  Google Scholar 

  • 5.

    Coetzee, B. W. T., Gaston, K. J. & Chown, S. L. Local scale comparisons of biodiversity as a test for global protected area ecological performance: a meta-analysis. PLoS One 9, e105824 (2014).

    ADS  Article  Google Scholar 

  • 6.

    UNEP-WCMC, IUCN & NGS. Protected Planet Live Report 2020. https://livereport.protectedplanet.net/ (2020).

  • 7.

    Visconti, B. P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 8.

    Jenkins, C. N., Van Houtan, K. S., Pimm, S. L. & Sexton, J. O. US protected lands mismatch biodiversity priorities. Proc. Natl. Acad. Sci. 112, 5081–5086 (2015).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Venter, O. et al. Bias in protected-area location and its effects on long-term aspirations of biodiversity conventions. Conserv. Biol. 32, 127–134 (2018).

    Article  Google Scholar 

  • 10.

    USGS. U.S. Geological Survey Gap Analysis Project (GAP): Protected Areas Database of the United States (PAD-US). https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/data-tools (2018).

  • 11.

    Comay, L. B., Crafton, R. E., Vincent, C. H. & Hoover, K. Federal Land Designations : A Brief Guide. https://fas.org/sgp/crs/misc/R45340.pdf (2018).

  • 12.

    Horton, G. Downsizing national monuments: The current debate and lessons from history. UCLA J. Environ. Law Policy 38, 79–102 (2020).

    Google Scholar 

  • 13.

    Kamal, S., Grodzińska-Jurczak, M. & Brown, G. Conservation on private land: a review of global strategies with a proposed classification system. J. Environ. Plan. Manag. 58, 576–597 (2015).

    Article  Google Scholar 

  • 14.

    Bargelt, L., Fortin, M. J. & Murray, D. L. Assessing connectivity and the contribution of private lands to protected area networks in the United States. PLoS ONE 15, 1–13 (2020).

    Article  Google Scholar 

  • 15.

    Vergílio, M. et al. Assessing the efficiency of protected areas to represent biodiversity: A small island case study. Environ. Conserv. 43, 337–349 (2016).

    Article  Google Scholar 

  • 16.

    Epperly, J. et al. Relationships between borders, management agencies, and the likelihood of watershed impairment. PLoS ONE 13, 1–14 (2018).

    Article  Google Scholar 

  • 17.

    Betts, M. G. & Villard, M.-A. Landscape thresholds in species occurrence as quantitative targets in forest management: generality in space and time? Setting conservation targets for managed forest landscapes (ed. Villard & Jonsson) 185–206 (Cambridge University Press, 2009). doi:10.1017/cbo9781139175388.010

  • 18.

    Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).

    Article  Google Scholar 

  • 19.

    Small, C. & Nicholls, R. J. A global analysis of human settlement in coastal zones. J. Coast. Res. 19, 584–599 (2003).

    Google Scholar 

  • 20.

    Le Saout, S. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).

    ADS  Article  Google Scholar 

  • 21.

    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Deguise, I. & Kerr, J. Protected areas and prospects for endangered species conservation in Canada. Conserv. Biol. 20, 48–55 (2006).

    Article  Google Scholar 

  • 23.

    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, https://doi.org/10.1371/journal.pbio.1001891 (2014).

  • 24.

    Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl. Acad. Sci. 100, 10309–10313 (2003).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Kukkonen, M. O. & Tammi, I. Systematic reassessment of Laos’ protected area network. Biol. Conserv. 229, 142–151 (2019).

    Article  Google Scholar 

  • 26.

    Prieto-Torres, D. A., Nori, J. & Rojas-Soto, O. R. Identifying priority conservation areas for birds associated to endangered Neotropical dry forests. Biol. Conserv. 228, 205–214 (2018).

    Article  Google Scholar 

  • 27.

    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    CAS  Article  Google Scholar 

  • 28.

    MRLC. 2001 National land cover database. https://www.mrlc.gov/ (2005).

  • 29.

    Adams, V. M., Pressey, R. L. & Naidoo, R. Opportunity costs: who really pays for conservation?. Biol. Conserv. 143, 439–448 (2010).

    Article  Google Scholar 

  • 30.

    Sutton, N. J., Cho, S. & Armsworth, P. R. A reliance on agricultural land values in conservation planning alters the spatial distribution of priorities and overestimates the acquisition costs of protected areas. Biol. Conserv. 194, 2–10 (2016).

    Article  Google Scholar 

  • 31.

    Merenlender, A. M., Huntsinger, L., Guthey, G. & Fairfax, S. K. Land trusts and conservation easements: who is conserving what for whom?. Conserv. Biol. 18, 65–75 (2004).

    Article  Google Scholar 

  • 32.

    Cortés Capano, G., Toivonen, T., Soutullo, A. & Di Minin, E. The emergence of private land conservation in scientific literature: a review. Biol. Conserv. 237, 191–199 (2019).

    Article  Google Scholar 

  • 33.

    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    ADS  CAS  Article  Google Scholar 

  • 34.

    The Nature Conservancy. TNC terrestrial Ecoregions. (2009).

  • 35.

    Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ. Manage. 54, 1249–1266 (2014).

    ADS  Article  Google Scholar 

  • 36.

    USGS Gap Analysis Program. Protected Areas Database of the United States (PAD-US), version 1.4 [vector digital data]. https://www.sciencebase.gov/catalog/item/5963ea3fe4b0d1f9f059d955 (2016).

  • 37.

    Baldwin, R. F. & Fouch, N. T. Understanding the biodiversity contributions of small protected areas presents many challenges. Land https://doi.org/10.3390/land7040123 (2018).

    Article  Google Scholar 

  • 38.

    Luja, V. H., Navarro, C. J., Torres Covarrubias, L. A., Cortés Hernández, M. & Vallarta Chan, I. L. Small protected areas as stepping-stones for jaguars in western Mexico. Trop. Conserv. Sci. 10, 194008291771705 (2017).

    Article  Google Scholar 

  • 39.

    Saura, S., Bodin, Ö & Fortin, M. J. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).

    Article  Google Scholar 

  • 40.

    Pebesma, E., Bivand, R., Rowlingson, B. & Gomez-Rubio, V. Sp: classes and methods for spatial data. http//CRAN.R-project.org/package=sp, R Packag. version 1.0–14 (2013).

  • 41.

    Hijmans, R. J. et al. Raster: raster: Geographic data analysis and modeling. R Packag. version 2–0 (2011).

  • 42.

    Nicholas J. Lewin-Koh contributions by Edzer J. Pebesma, Eric Archer, Adrian Baddeley, Hans-Jörg Bibiko, Stéphane Dray, David Forrest, Patrick Giraudoux, Duncan Golicher, Virgilio Gómez Rubio, Patrick Hausmann, Thomas Jagger, Sebastian P. Luque, Don MacQ, R. B. maptools: Tools for reading and handling spatial objects. (2009).

  • 43.

    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the geospacial data abstraction library. (2013).

  • 44.

    Bivand, R., Rundel, C., Pebesma, E. & Hufthammer, K. O. Interface to geometry engine – open source (GEOS): Package ‘rgeos’. R Documentation (2016).

  • 45.

    Tennekes, M. et al. tmap: Thematic maps. (2019).

  • 46.

    R Development Core Team. R: A language and environment for statistical computing. https://www.R-project.org. [Google Scholar] (2019).

  • 47.

    US Fish and Wildlife Service. Environmental conservation online system. USFWS, https://ecos.fws.gov/ecp/. (2016).

  • 48.

    Ricketts, T. & Imhoff, M. Biodiversity, urban areas, and agriculture: Locating priority ecoregions for conservation. Ecol. Soc. 8, https://www.ecologyandsociety.org/vol8/iss2/art1/ (2003).

  • 49.

    Lamoreux, J. F. et al. Global tests of biodiversity concordance and the importance of endemism. Nature 440, 212–214 (2006).

    ADS  CAS  Article  Google Scholar 

  • 50.

    US Endowment for Forestry and Communities. National conservation easement database. https://www.conservationeasement.us/ (2014).

  • 51.

    Bureau of Land Management. BLM National Surface Management Agency GIS. (2019).


  • Source: Ecology - nature.com

    Differential impact of thermal and physical permafrost disturbances on High Arctic dissolved and particulate fluvial fluxes

    Putting wind dispersal in context