in

Intracellular symbionts drive sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins

  • 1.

    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110:3229–36.

    CAS  PubMed  Google Scholar 

  • 2.

    Moran NA, Bennett GM. The tiniest tiny genomes. Annu Rev Microbiol. 2014;68:195–215.

    CAS  PubMed  Google Scholar 

  • 3.

    Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol. 2015;60:17–34.

    CAS  PubMed  Google Scholar 

  • 4.

    Engelstädter J, Hurst GDD. The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst. 2009;40:127–49.

    Google Scholar 

  • 5.

    Ma WJ, Schwander T. Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis. J Evol Biol. 2017;30:868–88.

    PubMed  Google Scholar 

  • 6.

    Bondy EC, Hunter MS. Sex ratios in the haplodiploid herbivores, aleyrodidae and thysanoptera: a review and tools for study. Adv Insect Physiol. 2019;56:251–81.

    Google Scholar 

  • 7.

    Hunter MS, Perlman SJ, Kelly SE. A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc Natl Acad Sci USA. 2003;270:2185–90.

    Google Scholar 

  • 8.

    Beckmann JF, Ronau JA, Hochstrasser MA. Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat Microbiol 2017;2:17007.

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Harumoto T, Lemaitre B. Male-killing toxin in a bacterial symbiont of Drosophila. Nature 2018;557:252–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA. 2010;107:769–74.

    CAS  PubMed  Google Scholar 

  • 11.

    Michalkova V, Benoit JB, Weiss BL, Attardo GM, Aksoy S. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Appl Environ Microbiol. 2014;80:5844–53.

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Moriyama M, Nikoh N, Hosokawa T, Fukatsu T. Riboflavin provisioning underlies Wolbachia’s fitness contribution to its insect host. mBio . 2015;6:e01732–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Snyder AK, Rio RVM. ‘Wigglesworthia morsitans’ folate (vitamin B9) biosynthesis contributes to tsetse host fitness. Appl Environ Microbiol. 2015;81:5375–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Ju JF, Bing XL, Zhao DS, Guo Y, Xi Z, Hoffmann AA, et al. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J. 2019;14:676–87.

    PubMed  Google Scholar 

  • 15.

    Tsuchida T, Koga R, Shibao H, Matsumoto T, Fukatsu T. Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Mol Ecol. 2002;11:2123–35.

    CAS  PubMed  Google Scholar 

  • 16.

    Baumann P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol. 2005;59:155–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Gottlieb Y, Ghanim M, Gueguen G, Kontsedalov S, Vavre F, Fleury F, et al. Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J. 2008;22:2591–9.

    CAS  PubMed  Google Scholar 

  • 18.

    Sloan DB, Moran NA. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol Biol Evol. 2012;29:3781–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Skaljac M, Zanic K, Ban SG, Kontsedalov S, Ghanim M. Co-infection and localization of secondary symbionts in two whitefly species. BMC Microbiol. 2010;10:142.

    PubMed  PubMed Central  Google Scholar 

  • 20.

    McCutcheon JP, Von Dohlen CD. An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol. 2011;21:1366–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, Fujie M, et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell. 2013;153:1567–78.

    CAS  PubMed  Google Scholar 

  • 22.

    Koga R, Meng XY, Tsuchida T, Fukatsu T. Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte-embryo interface. Proc Natl Acad Sci USA. 2012;109:E1230–E1237.

    CAS  PubMed  Google Scholar 

  • 23.

    Fukatsu T, Nikoh N. Two intracellular symbiotic bacteria from the mulberry psyllid Anomoneura mori (Insecta, Homoptera). Appl Environ Microbiol. 1998;64:3599–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Degnan PH, Yu Y, Sisneros N, Wing RA, Moran NA. Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc Natl Acad Sci USA. 2009;106:9063–8.

    CAS  PubMed  Google Scholar 

  • 25.

    Rao Q, Wang S, Su YL, Bing XL, Liu SS, Wang XW. Draft genome sequence of ‘Candidatus Hamiltonella defensa’ an endosymbiont of the whitefly Bemisia tabaci. J Bacteriol. 2012;194:3558.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Xue J, Zhou X, Zhang CX, Yu LL, Fan HW, Wang Z, et al. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biol. 2014;15:521.

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Santos-Garcia D, Juravel K, Freilich S, Zchori-Fein E, Latorre A, Moya A, et al. To B or not to B: comparative genomics suggests Arsenophonus as a source of B vitamins in whiteflies. Front Microbiol. 2018;9:2254–70.

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Ouvrard D, Martin JH. The whiteflies: taxonomic checklist of the world’s whiteflies (Insecta: Hemiptera: Aleyrodidae). 2019. http://www.hemiptera-databases.org/whiteflies/.

  • 29.

    Yang P. The greenhouse whiteflies and plant quarantine. Chin Bull Entomol. 1981;18:69–71.

    Google Scholar 

  • 30.

    Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, Ruan YM, et al. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science . 2007;318:1769–72.

    CAS  PubMed  Google Scholar 

  • 31.

    Zchori-Fein E, Lahav T, Freilich S. Variations in the identity and complexity of endosymbiont combinations in whitefly hosts. Front Microbiol. 2014;5:310.

    PubMed  PubMed Central  Google Scholar 

  • 32.

    Luan JB, Shan HW, Isermann P, Huang JH. Cellular and molecular remodelling of a host cell for vertical transmission of bacterial symbionts. Proc R Soc B. 2016;283:20160580.

    PubMed  Google Scholar 

  • 33.

    Luan JB, Sun XP, Fei ZJ, Douglas AE. Maternal inheritance of a single somatic animal cell displayed by the bacteriocyte in the whitefly Bemisia tabaci. Curr Biol. 2018;28:459–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Shan HW, Luan JB, Liu YQ, Douglas AE, Liu SS. The inherited bacterial symbiont Hamiltonella influences the sex ratio of an insect host. Proc R Soc B. 2019;286:20191677.

    CAS  PubMed  Google Scholar 

  • 35.

    Rao Q, Rollat-Farnier PA, Zhu DT, Santos-Garcia D, Silva FJ, Moya A, et al. Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genom. 2015;16:226.

    Google Scholar 

  • 36.

    Scott IAW, Workman PJ, Drayton GM, Burnip GM. First record of Bemisia tabaci biotype Q in New Zealand. N Z Plant Prot. 2007;60:264–70.

    CAS  Google Scholar 

  • 37.

    Qin L, Pan LL, Liu SS. Further insight into reproductive incompatibility between putative cryptic species of the Bemisia tabaci whitefly complex. Insect Sci. 2016;23:215–24.

    CAS  PubMed  Google Scholar 

  • 38.

    Xu XR, Li NN, Bao XY, Douglas AE, Luan JB. Patterns of host cell inheritance in the bacterial symbiosis of whiteflies. Insect Sci. 2019; https://doi.org/10.1111/1744-7917.12708.

  • 39.

    Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.

    CAS  PubMed  Google Scholar 

  • 40.

    Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, et al. Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl Environ Microbiol. 2006;72:3646–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Hadjistylli M, Schwartz SA, Brown JK, Roderick GK. Isolation and characterization of nine microsatellite loci from Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B. J Insect Sci. 2014;14:148.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Bondy EC, Hunter MS. Determining the egg fertilization rate of Bemisia tabaci using a cytogenetic technique. J Vis Exp. 2019;https://doi.org/10.3791/59213.

  • 43.

    Ankrah NYD, Luan JB, Douglasa AE. Cooperative metabolism in a three-partner insect-bacterial symbiosis revealed by metabolic modeling. J Bacteriol 2017;199:e00872–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Ren FR, Bai B, Hong JS, Huang YZ, Luan JB. A microbiological assay for biotin determination in insects. Insect Sci. 2020; https://doi.org/10.1111/1744-7917.12827.

  • 45.

    Salem H, Bauer E, Strauss AS, Vogel H, Marz M, Kaltenpoth M. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc R Soc B. 2014;281:1838.

    Google Scholar 

  • 46.

    Duron O, Morel O, Noël V, Buysse M, Binetruy F, Lancelot R, et al. Tick-bacteria mutualism depends on B vitamin synthesis pathways. Curr Biol. 2018;28:1896–902.

    CAS  PubMed  Google Scholar 

  • 47.

    Pant NC, Fraenkel G. The function of the symbiotic yeasts of two insect species, Lasioderma serricorne F. and Stegobium (Sitodrepa) paniceum L. Science. 1950;112:498–500.

    CAS  PubMed  Google Scholar 

  • 48.

    Byrne DN, Bellows TS Jr. Whitefly biology. Annu Rev Entomol. 1991;36:431–57.

    Google Scholar 

  • 49.

    Giorgini M, Monti MM, Caprio E, Stouthamer R, Hunter MS. Feminization and the collapse of haplodiploidy in an asexual parasitoid wasp harboring the bacterial symbiont Cardinium. Heredity. 2009;102:365–71.

    CAS  PubMed  Google Scholar 

  • 50.

    Ma WJ, Pannebakker BA, van de Zande L, Schwander T, Wertheim B, Beukeboom LW. Diploid males support a two-step mechanism of endosymbiont-induced thelytoky in a parasitoid wasp. BMC Evol Biol. 2015;15:84.

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Sloan DB, Moran NA. The evolution of genomic instability in the obligate endosymbionts of whiteflies. Genome Biol Evol. 2013;5:783–93.

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Chen W, Hasegawa DK, Kaur N, Kliot A, Pinheiro PV, Luan JB, et al. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. 2016;14:110.

    PubMed  PubMed Central  Google Scholar 

  • 53.

    Luan JB, Chen W, Hasegawa DK, Simmons A, Wintermantel WM, Ling KS, et al. Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects. Genome Biol Evol. 2015;7:2635–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Russell JA, Latorre A, Sabater-Muñoz B, Moya A, Moran NA. Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol. 2003;12:1061–75.

    CAS  PubMed  Google Scholar 

  • 55.

    Manzano-Marı́n A, Coeur d’acier A, Clamens AL, Orvain C, Cruaud C, Barbe V, et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J. 2020;14:259–73.

    Google Scholar 

  • 56.

    Ayoubi A, Talebi AA, Fathipour Y, Mehrabadi M. Coinfection of the secondary symbionts, Hamiltonella defensa and Arsenophonus sp. contribute to the performance of the major aphid pest, Aphis gossypii (Hemiptera: Aphididae). Insect Sci. 2020;27:86–98.

    PubMed  Google Scholar 

  • 57.

    Thao MLL, Baumann P. Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Curr Microbiol. 2004;48:140–4.

    CAS  PubMed  Google Scholar 

  • 58.

    Nováková E, Hypša V, Moran NA. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 2009;9:143.

    PubMed  PubMed Central  Google Scholar 

  • 59.

    Nováková E, Husník F, Šochová E, Hypša V. Arsenophonus and Sodalis symbionts in louse flies: an analogy to the Wigglesworthia and Sodalis system in tsetse flies. Appl Environ Microbiol. 2015;81:6189–99.

    PubMed  PubMed Central  Google Scholar 

  • 60.

    Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci USA. 2014;111:10257–62.

    CAS  PubMed  Google Scholar 

  • 61.

    Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, et al. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol. 2006;4:e188.

    PubMed  PubMed Central  Google Scholar 

  • 62.

    McCutcheon JP, Moran NA. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA. 2007;104:19392–7.

    CAS  PubMed  Google Scholar 

  • 63.

    McCutcheon JP, McDonald BR, Moran NA. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci USA. 2009;106:15394–9.

    CAS  PubMed  Google Scholar 

  • 64.

    Matsuura Y, Moriyama M, Łukasik P, Vanderpool D, Tanahashi M, Meng XY, et al. Recurrent symbiont recruitment from fungal parasites in cicadas. Proc Natl Acad Sci USA. 2018;115:E5970–E5979.

    CAS  PubMed  Google Scholar 

  • 65.

    Kapantaidaki DE, Ovcarenko I, Fytrou N, Knott KE, Bourtzis K, Tsagkarakou A. Low levels of mitochondrial DNA and symbiont diversity in the worldwide agricultural pest, the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). J Hered. 2014;106:80–92.

    PubMed  Google Scholar 

  • 66.

    Douglas AE. The B vitamin nutrition of insects: the contributions of diet, microbiome and horizontally acquired genes. Curr Opin Insect Sci. 2017;23:65–69.

    PubMed  Google Scholar 

  • 67.

    Smykal V, Raikhel AS. Nutritional control of insect reproduction. Curr Opin Insect Sci. 2015;11:31–38.

    PubMed  PubMed Central  Google Scholar 

  • 68.

    Wheeler D. The role of nourishment in oogenesis. Ann Rev Entomol. 1996;41:407–31.

    CAS  Google Scholar 

  • 69.

    Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, et al. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science. 2011;332:254–6.

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Preying on seals pushes killer whales from Norway above pollution effects thresholds

    Fatty acid analyses provide novel insights on hippo defecation and consequences for aquatic food webs