in

Genome-wide analysis of diamondback moth, Plutella xylostella L., from Brassica crops and wild host plants reveals no genetic structure in Australia

  • 1.

    Zalucki, M. P. & Furlong, M. J. Forecasting Helicoverpa populations in Australia: a comparison of regression based models and a bioclimatic based modelling approach. Insect Sci. 12, 45–56 (2005).

    Article  Google Scholar 

  • 2.

    Mazzi, D. & Dorn, S. Movement of insect pests in agricultural landscapes. Ann. Appl. Biol. 160, 97–113 (2012).

    Article  Google Scholar 

  • 3.

    Eigenbrode, S. D. et al. Host-adapted aphid populations differ in their migratory patterns and capacity to colonize crops. J. Appl. Ecol. 53, 1382–1390. https://doi.org/10.1111/1365-2664.12693 (2016).

    Article  Google Scholar 

  • 4.

    Furlong, M. J., Wright, D. J. & Dosdall, L. M. Diamondback moth ecology and management: problems, progress, and prospects. Annu. Rev. Entomol. 58, 517–541. https://doi.org/10.1146/annurev-ento-120811-153605 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 5.

    Downes, S. et al. A perspective on management of Helicoverpa armigera: transgenic Bt cotton, IPM, and landscapes. Pest Manag. Sci. 73, 485–492. https://doi.org/10.1002/ps.4461 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 6.

    Endersby, N. M., Ridland, P. M. & Hoffmann, A. A. The effects of local selection versus dispersal on insecticide resistance patterns: longitudinal evidence from diamondback moth (Plutella xylostella (Lepidoptera: Plutellidae)) in Australia evolving resistance to pyrethroids. Bull. Entomol. Res. 98, 145–157. https://doi.org/10.1017/S0007485307005494 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 7.

    Broquet, T. & Petit, E. J. Molecular estimation of dispersal for ecology and population genetics. Annu. Rev. Ecol. Evol. Syst. 40, 193–216. https://doi.org/10.1146/annurev.ecolsys.110308.120324 (2009).

    Article  Google Scholar 

  • 8.

    Pelissie, B., Crossley, M. S., Cohen, Z. P. & Schoville, S. D. Rapid evolution in insect pests: the importance of space and time in population genomics studies. Curr. Opin. Insect Sci. 26, 8–16. https://doi.org/10.1016/j.cois.2017.12.008 (2018).

    Article  PubMed  Google Scholar 

  • 9.

    Parry, H. R. et al. A native with a taste for the exotic: weeds and pasture provide year-round habitat for Nysius vinitor (Hemiptera: Orsillidae) across Australia, with implications for area-wide management. Aust. Entomol. 58, 237–247. https://doi.org/10.1111/aen.12391 (2019).

    Article  Google Scholar 

  • 10.

    Wei, S. J. et al. Genetic structure and demographic history reveal migration of the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) from the southern to northern regions of China. PLoS ONE 8, e59654. https://doi.org/10.1371/journal.pone.0059654 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Hereward, J. P., Walter, G. H., DeBarro, P. J., Lowe, A. J. & Riginos, C. Gene flow in the green mirid, Creontiades dilutus (Hemiptera: Miridae), across arid and agricultural environments with different host plant species. Ecol. Evol. 3, 807–821. https://doi.org/10.1002/ece3.510 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Zalucki, M. P. et al. Estimating the economic cost of one of the worlds major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): just how long is a piece of string? J. Econ. Entomol. 105, 1115–1129. https://doi.org/10.1603/EC12107 (2012).

    Article  PubMed  Google Scholar 

  • 13.

    Li, Z., Feng, X., Liu, S.-S., You, M. & Furlong, M. J. Biology, ecology, and management of the diamondback moth in China. Annu. Rev. Entomol. 61, 277–296. https://doi.org/10.1146/annurev-ento-010715-023622 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 14.

    Talekar, N. S. & Shelton, A. Biology, ecology, and management of the diamondback moth. Annu. Rev. Entomol. 38, 275–301. https://doi.org/10.1146/annurev.en.38.010193.001423 (1993).

    Article  Google Scholar 

  • 15.

    Mosiane, S. M., Kfir, R. & Villet, M. H. Seasonal phenology of the diamondback moth, Plutella xylostella (L.), (Lepidoptera: Plutellidae), and its parasitoids on canola, Brassica napus (L.), in Gauteng province, South Africa. Afr. Entomol. 11, 277–285 (2003).

    Google Scholar 

  • 16.

    Dosdall, L. M., Mason, P. G., Olfert, O., Kaminski, L. & Keddie, B. A. The origins of infestations of diamondback moth, Plutella xylostella (L.), in canola in western Canada. In The Management of Diamondback Moth and Other Crucifer Pests: Proceedings of the Fourth International Workshop (eds Endersby, N. M. & Ridland, P. M.) 95–100 (The Regional Institute Ltd, Gosford, New South Wales, Australia, 2004).

  • 17.

    Dosdall, L. M., Soroka, J. J. & Olfert, O. The diamondback moth in canola and mustard: current pest status and future prospects. Prairie Soils and Crops J. 4, 66–76 (2011).

    Google Scholar 

  • 18.

    Furlong, M. J. et al. Ecology of diamondback moth in Australian canola: landscape perspectives and the implications for management. Aust. J. Exp. Agric. 48, 1494–1505. https://doi.org/10.1071/EA07413 (2008).

    Article  Google Scholar 

  • 19.

    Endersby, N. M., McKechnie, S. W., Ridland, P. M. & Weeks, A. R. Microsatellites reveal a lack of structure in Australian populations of the diamondback moth, Plutella xylostella (L.). Mol. Ecol. 15, 107–118. https://doi.org/10.1111/j.1365-294X.2005.02789.x (2006).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    ABARES. Australian commodity production statistics. Australian Bureau of Agricultural and Resource Economics and Sciences cat. no. 7113.0 (2017).

  • 21.

    Gu, H., Fitt, G. P. & Baker, G. H. Invertebrate pests of canola and their management in Australia: a review. Aust. J. Entomol. 46, 231–243. https://doi.org/10.1111/j.1440-6055.2007.00594.x (2007).

    Article  Google Scholar 

  • 22.

    Baker, G. J. Crucifer vegetable insecticide resistance management strategies and issues in Australia. In The Sixth International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests (eds Srinivasan, R., Shelton, A. M. & Collins, H. L.) 21–25 (AVRDC – The World Vegetable Centre, Tainan, Taiwan, 2011).

  • 23.

    Mo, J. H., Baker, G., Keller, M. & Roush, R. Local dispersal of the diamondback moth (Plutella xylostella (L.)) (Lepidoptera: Plutellidae). Environ. Entomol. 32, 71–79. https://doi.org/10.1603/0046-225X-32.1.71 (2003).

    Article  Google Scholar 

  • 24.

    Baker, G. J. Improving management of diamondback moth in Australian canola: final report for GRDC (DAS00134). Technical Report, South Australian Research and Development Institute (2015).

  • 25.

    Pichon, A. et al. Genetic differentiation among various populations of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). B. Entomol. Res. 96, 137–144. https://doi.org/10.1079/BER2005409 (2006).

    CAS  Article  Google Scholar 

  • 26.

    Juric, I., Salzburger, W. & Balmer, O. Spread and global population structure of the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) and its larval parasitoids Diadegma semiclausum and Diadegma fenestrale (Hymenoptera: Ichneumonidae) based on mtDNA. B. Entomol. Res. 107, 155–164. https://doi.org/10.1017/S0007485316000766 (2017).

    CAS  Article  Google Scholar 

  • 27.

    Kim, I. et al. Mitochondrial COI gene sequence-based population genetic structure of the diamondback moth, Plutella xylostella, Korea. Korean J. Genet. 25, 155–170 (2003).

    CAS  Google Scholar 

  • 28.

    Yang, J. et al. Insight into the migration routes of Plutella xylostella in China using mtCOI and ISSR markers. PLoS ONE 10, e0130905. https://doi.org/10.1371/journal.pone.0130905 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Caprio, M. A. & Tabashnik, B. E. Allozymes used to estimate gene flow among populations of diamondback moth (Lepidoptera, Plutellidae) in Hawaii. Environ. Entomol. 21, 808–816. https://doi.org/10.1093/ee/21.4.808 (1992).

    Article  Google Scholar 

  • 30.

    Chang, W. X. Z. et al. Mitochondrial DNA sequence variation among geographic strains of diamondback moth (Lepidoptera: Plutellidae). Ann. Entomol. Soc. Am. 90, 590–595. https://doi.org/10.1093/aesa/90.5.590 (1997).

    CAS  Article  Google Scholar 

  • 31.

    Saw, J., Endersby, N. M. & McKechnie, S. W. Low mtDNA diversity among widespread Australian diamondback moth Plutella xylostella (L.) suggests isolation and a founder effect. Insect Sci. 13, 365–373 (2006).

    CAS  Article  Google Scholar 

  • 32.

    Endersby, N. M. Population structure and gene flow in diamondback moth in Australia and around the world: current state of knowledge and directions for the future. In The Management of Diamondback Moth and Other Crucifer Pests: Proceedings of the Fifth International Workshop (eds Shelton A. M. et al.) 132–147 (China Agricultural Science and Technology Press, Beijing, 2008).

  • 33.

    Fu, X., Xing, Z., Liu, Z., Ali, A. & Wu, K. Migration of diamondback moth, Plutella xylostella, across the Bohai sea in northern China. Crop Prot. 64, 143–149. https://doi.org/10.1016/j.cropro.2014.06.021 (2014).

    Article  Google Scholar 

  • 34.

    Delgado, A. M. & Cook, J. M. Effects of a sex-ratio distorting endosymbiont on mtDNA variation in a global insect pest. BMC Evol. Biol. 9, 49. https://doi.org/10.1186/1471-2148-9-49 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Perry, K. D. et al. Cryptic Plutella species show deep divergence despite the capacity to hybridize. BMC Evol. Biol. 18, 77. https://doi.org/10.1186/s12862-018-1183-4 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Roux, O. et al. ISSR-PCR: tool for discrimination and genetic structure analysis of Plutella xylostella populations native to different geographical areas. Mol. Phylogenet. Evol. 43, 240–250. https://doi.org/10.1016/j.ympev.2006.09.017 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 37.

    Landry, J. F. & Hebert, P. D. N. Plutella australiana (Lepidoptera, Plutellidae), an overlooked diamondback moth revealed by DNA barcodes. Zookeys 327, 43–63. https://doi.org/10.3897/zookeys.327.5831 (2013).

    Article  Google Scholar 

  • 38.

    Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351. https://doi.org/10.1038/nrg.2016.49 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 39.

    Davey, J. W. et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12, 499–510. https://doi.org/10.1038/nrg3012 (2011).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 40.

    Narum, S. R., Buerkle, C. A., Davey, J. W., Miller, M. R. & Hohenlohe, P. A. Genotyping-by-sequencing in ecological and conservation genomics. Mol. Ecol. 22, 2841–2847. https://doi.org/10.1111/mec.12350 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, e3376. https://doi.org/10.1371/journal.pone.0003376 (2008).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    Baxter, S. W. et al. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS ONE 6, e19315. https://doi.org/10.1371/journal.pone.0019315 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. & Hohenlohe, P. A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17, 81–92. https://doi.org/10.1038/nrg.2015.28 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 44.

    Davey, J. L. & Blaxter, M. W. RADSeq: next-generation population genetics. Brief. Funct. Genomics 9, 416–423. https://doi.org/10.1093/bfgp/elq031 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 45.

    Putman, A. I. & Carbone, I. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol. Evol. 4, 4399–4428. https://doi.org/10.1002/ece3.1305 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 46.

    Haasl, R. J. & Payseur, B. A. Multi-locus inference of population structure: a comparison between single nucleotide polymorphisms and microsatellites. Heredity 106, 158–171. https://doi.org/10.1038/hdy.2010.21 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 47.

    Vendrami, D. L. J. et al. RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity. R. Soc. Open Sci. 4, 160548. https://doi.org/10.1098/rsos.160548 (2017).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 48.

    Rasic, G. et al. Aedes aegypti has spatially structured and seasonally stable populations in Yogyakarta, Indonesia. Parasit. Vectors 8, 610. https://doi.org/10.1186/s13071-015-1230-6 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Rasic, G. et al. Contrasting genetic structure between mitochondrial and nuclear markers in the dengue fever mosquito from Rio de Janeiro: implications for vector control. Evol. Appl. 8, 901–915. https://doi.org/10.1111/eva.12301 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Perry, K. D., Pederson, S. M. & Baxter, S. W. Genome-wide SNP discovery in field and laboratory colonies of Australian Plutella species. In Proceedings of the Seventh International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests, Mysore J. Agric. Sci., 51A, 18–31 (2017).

  • 51.

    Fountain, E. D., Pauli, J. N., Reid, B. N., Palsboll, P. J. & Peery, M. Z. Finding the right coverage: the impact of coverage and sequence quality on single nucleotide polymorphism genotyping error rates. Mol. Ecol. Resour. 16, 966–978. https://doi.org/10.1111/1755-0998.12519 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 52.

    Wright, S. Isolation by distance. Genetics 28, 114–138 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Grapputo, A., Boman, S., Lindstrom, L., Lyytinen, A. & Mappes, J. The voyage of an invasive species across continents: genetic diversity of North American and European Colorado potato beetle populations. Mol. Ecol. 14, 4207–4219. https://doi.org/10.1111/j.1365-294X.2005.02740.x (2005).

    CAS  Article  PubMed  Google Scholar 

  • 54.

    Janes, J. K. et al. The (K=2) conundrum. Mol. Ecol. 26, 3594–3602. https://doi.org/10.1111/mec.14187 (2017).

    Article  PubMed  Google Scholar 

  • 55.

    Pritchard, J., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Kalinowski, S. T. The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity 106, 625–632. https://doi.org/10.1038/hdy.2010.95 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 57.

    Rodriguez-Ramilo, S. T. & Wang, J. The effect of close relatives on unsupervised Bayesian clustering algorithms in population genetic structure analysis. Mol. Ecol. Resour. 12, 873–884. https://doi.org/10.1111/j.1755-0998.2012.03156.x (2012).

    Article  PubMed  Google Scholar 

  • 58.

    Wang, J. Effects of sampling close relatives on some elementary population genetics analyses. Mol. Ecol. Resour. 18, 41–54. https://doi.org/10.1111/1755-0998.12708 (2018).

    Article  PubMed  Google Scholar 

  • 59.

    Ward, C. M. & Baxter, S. W. Assessing genomic admixture between cryptic Plutella moth species following secondary contact. Genome Biol. Evol. 10, 2973–2985. https://doi.org/10.1093/gbe/evy224 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Epps, C. W. & Keyghobadi, N. Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol. Ecol. 24, 6021–6040. https://doi.org/10.1111/mec.13454 (2015).

    Article  PubMed  Google Scholar 

  • 61.

    Donnelly, M., Licht, M. & Lehmann, T. Evidence for recent population expansion in the evolutionary history of the malaria vectors Anopheles arabiensis and Anopheles gambiae. Mol. Biol. Evol. 18, 1353–1364. https://doi.org/10.1093/oxfordjournals.molbev.a003919 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 62.

    Niu, Y. Q., Nansen, C., Li, X. W. & Liu, T. X. Geographical variation of Plutella xylostella (Lepidoptera: Plutellidae) populations revealed by mitochondrial COI gene in China. J. Appl. Entomol. 138, 692–700. https://doi.org/10.1111/jen.12130 (2014).

    CAS  Article  Google Scholar 

  • 63.

    Hurst, G. D. D. & Jiggins, F. M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc. R. Soc. B Biol. Sci. 272, 1525–1534. https://doi.org/10.1098/rspb.2005.3056 (2005).

    CAS  Article  Google Scholar 

  • 64.

    You, M. et al. Variation among 532 genomes unveils the origin and evolutionary history of a global insect herbivore. Nat. Commun. 11, 2321. https://doi.org/10.1038/s41467-020-16178-9 (2020).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 65.

    Slatkin, M. Gene flow in natural populations. Annu. Rev. Ecol. Syst. 16, 393–430. https://doi.org/10.1146/annurev.ecolsys.16.1.393 (1985).

    Article  Google Scholar 

  • 66.

    Mills, L. S. & Allendorf, F. W. The one-migrant-per-generation rule in conservation and management. Cons. Biol. 10, 1509–1518. https://doi.org/10.1046/j.1523-1739.1996.10061509.x (1996).

    Article  Google Scholar 

  • 67.

    Perry, K. D. The colonisation of canola crops by the diamondback moth, Plutella xylostella L., in southern Australia. Ph.D. thesis, The University of Adelaide (2019).

  • 68.

    Hatami, B. Seasonal occurrence and abundance of diamondback moth, Plutella xylostella (L.), and its major parasitoids on brassicaceous plants in South Australia. Ph.D. thesis, The University of Adelaide (1996).

  • 69.

    Ridland, P. M. & Endersby, N. M. Seasonal phenology of diamondback moth populations in southern Australia. In The Management of Diamondback Moth and Other Crucifer Pests: Proceedings of the Fifth International Workshop (eds Shelton A. M. et al.) 90–101 (China Agricultural Science and Technology Press, Beijing, 2008).

  • 70.

    Roush, R. T. & McKenzie, J. A. Ecological genetics of insecticide and acaricide resistance. Annu. Rev. Entomol. 32, 361–380. https://doi.org/10.1146/annurev.en.32.010187.002045 (1987).

    CAS  Article  PubMed  Google Scholar 

  • 71.

    Zalucki, M. P. & Furlong, M. J. Predicting outbreaks of a migratory pest: an analysis of DBM distribution and abundance revisited. In The Sixth International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests (eds Srinivasan, R., Shelton, A. M. & Collins, H. L.) 8–14 (AVRDC – The World Vegetable Centre, Tainan, Taiwan, 2011).

  • 72.

    Benestan, L. et al. Sex matters in massive parallel sequencing: evidence for biases in genetic parameter estimation and investigation of sex determination systems. Mol. Ecol. 26, 6767–6783. https://doi.org/10.1111/mec.14217 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 73.

    Robertson, P. L. Diamondback moth investigation in New Zealand. N. Z. J. Sci. Technol. 20, 330–340 (1939).

    Google Scholar 

  • 74.

    Zraket, C., Barth, J., Heckel, D. & Abbott, A. Genetic linkage mapping with restriction fragment length polymorphisms in the tobacco budworm, Heliothis virescens. In Molecular Insect Science (eds Hagedorn, H. H., Hildebrand, J. G., Kidwell M. G. & Law, J. H.) 13–20 (Springer, Boston, MA, 1990). https://doi.org/10.1007/978-1-4899-3668-4_2

  • 75.

    Andrews, S. FASTQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010). Accessed August 2016.

  • 76.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 77.

    Lunter, G. & Goodson, M. Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res. 21, 936–939. https://doi.org/10.1101/gr.111120.110 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 78.

    Broad Institute. http://broadinstitute.github.io/picard/. Accessed 10 December 2017.

  • 79.

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303. https://doi.org/10.1101/gr.107524.110 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 80.

    DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491. https://doi.org/10.1038/ng.806 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 81.

    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 82.

    Lischer, H. E. L. & Excoffier, L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28, 298–299. https://doi.org/10.1093/bioinformatics/btr642 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 83.

    Perry, K. D. https://github.com/kymperry01/PlutellaCanola. Accessed November 2018.

  • 84.

    Goudet, J. & Jombart, T. hierfstat: Estimation and tests of hierarchical F-statistics (2015). R package version 0.04-22.

  • 85.

    Nei, M. Molecular Evolutionary Genetics (Columbia University Press, New York, 1987).

    Google Scholar 

  • 86.

    Weir, B. & Cockerham, C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370. https://doi.org/10.2307/2408641 (1984).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 87.

    Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodoehl, P. A. diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788. https://doi.org/10.1111/2041-210X.12067 (2013).

    Article  Google Scholar 

  • 88.

    Rousset, F. GENEPOP ‘007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).

    Article  PubMed  Google Scholar 

  • 89.

    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).

    MathSciNet  MATH  Google Scholar 

  • 90.

    Armstrong, R. A. When to use the Bonferroni correction. Ophthal. Physiol. Opt. 34, 502–508. https://doi.org/10.1111/opo.12131 (2014).

    Article  Google Scholar 

  • 91.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2017).

  • 92.

    Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 93.

    Dray, S. & Dufour, A. B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).

    Article  Google Scholar 

  • 94.

    Hijmans, R. J. geosphere: Spherical Trigonometry. R package version 1.5-7 (2017).

  • 95.

    Kamvar, Z. N., Tabima, J. F. & Gruenwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 96.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).

    CAS  Article  PubMed  Google Scholar 

  • 97.

    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).

    Article  Google Scholar 

  • 98.

    Jakobsson, M. & Rosenberg, N. A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806. https://doi.org/10.1093/bioinformatics/btm233 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 99.

    Rosenberg, N. A. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138. https://doi.org/10.1046/j.1471-8286.2003.00566.x (2004).

    Article  Google Scholar 

  • 100.

    Jombart, T. adegenet: an R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 101.

    Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071. https://doi.org/10.1093/bioinformatics/btr521 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 102.

    Ryman, N. & Palm, S. POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol. Ecol. Notes 6, 600–602. https://doi.org/10.1111/j.1365-294X.2006.01378.x (2006).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Iron is not everything: unexpected complex metabolic responses between iron-cycling microorganisms

    Variations in foliar carbon:nitrogen and nitrogen:phosphorus ratios under global change: a meta-analysis of experimental field studies