in

Sheep feeding preference as a tool to control pine invasion in Patagonia: influence of foliar toughness, terpenoids and resin content

  • 1.

    Augustine, D. J. & McNaughton, S. J. Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance. J. Wildl. Manag. 62, 1165–1183 (1998).

    Google Scholar 

  • 2.

    Huntly, N. Herbivores and the dynamics of communities and ecosystems. Annu. Rev. Ecol. Syst. 22, 477–503 (1991).

    Google Scholar 

  • 3.

    Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17, 164–170 (2002).

    Google Scholar 

  • 4.

    Maron, J. L. & Vila, M. When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95, 361–373 (2001).

    Google Scholar 

  • 5.

    Lockwood, J. L., Hoopes, M. F. & Marchetti, M. P. Establishment success: the influence of biotic interactions. In Invasion Ecology (eds Lockwood, J. L. et al.) 107–131 (Wiley, Hoboken, 2013).

    Google Scholar 

  • 6.

    Meijer, K., Schilthuizen, M., Beukeboom, L. & Smit, C. A review and meta-analysis of the enemy release hypothesis in plant-herbivorous insect systems. PeerJ https://doi.org/10.7717/peerj.2778 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    Nunez-Mir, G. C. et al. Biotic resistance to exotic invasions: its role in forest ecosystems, confounding artifacts, and future directions. Biol. Invasions 19, 3287–3299 (2017).

    Google Scholar 

  • 8.

    Jeschke, J. M. & Heger, T. Invasion Biology. Hypotheses and Evidence (CABI, Wallingford, 2018).

    Google Scholar 

  • 9.

    Averill, K. M., Mortensen, D. A., Smithwick, E. A. H. & Post, E. Deer feeding selectivity for invasive plants. Biol. Invasions 18, 1247–1263 (2016).

    Google Scholar 

  • 10.

    Parker, J., Burkepile, D. & Hay, M. Opposing effects of native and exotic herbivores on plant invasions. Science 311, 1459–1461. https://doi.org/10.1126/science.1121407 (2006).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 11.

    Hobbs, R. J. Synergisms among habitat fragmentation, livestock grazing, and biotic invasions in Southwestern Australia. Conserv. Biol. 15, 1522–1528 (2001).

    Google Scholar 

  • 12.

    Knight, T. M., Dunn, J. L., Smith, L. A., Davis, J. & Kalisz, S. Deer facilitate invasive plant success in a Pennsylvania forest understory. Nat. Areas J. 29, 110–116 (2009).

    Google Scholar 

  • 13.

    Nuñez, M. A. et al. Exotic mammals disperse exotic fungi that promote invasion by exotic trees. PLoS ONE 8, 1–6 (2013).

    Google Scholar 

  • 14.

    Oduor, A. M. O., Gómez, J. M. & Strauss, S. Y. Exotic vertebrate and invertebrate herbivores differ in their impacts on native and exotic plants: a meta-analysis. Biol. Invasions 12, 407–419 (2010).

    Google Scholar 

  • 15.

    Spear, D. & Chown, S. L. Non-indigenous ungulates as a threat to biodiversity. J. Zool. 279, 1–17 (2009).

    Google Scholar 

  • 16.

    Vavra, M., Parks, C. G. & Wisdom, M. J. Biodiversity, exotic plant species, and herbivory: the good, the bad, and the ungulate. For. Ecol. Manag. 246, 66–72 (2007).

    Google Scholar 

  • 17.

    Loydi, A. & Zalba, S. M. Feral horses dung piles as potential invasion windows for alien plant species in natural grasslands. Plant Ecol. 201, 471–480 (2009).

    Google Scholar 

  • 18.

    Richardson, D. M. & Rejmánek, M. Conifers as invasive aliens: a global survey and predictive framework. Divers. Distrib. 10, 321–331 (2004).

    Google Scholar 

  • 19.

    Simberloff, D. et al. Spread and impact of introduced conifers in South America: lessons from other southern hemisphere regions. Austral. Ecol. 35, 489–504 (2010).

    Google Scholar 

  • 20.

    Rejmánek, M. & Richardson, D. M. What attributes make some plant species more invasive?. Ecology 77, 1655–1661 (1996).

    Google Scholar 

  • 21.

    Nuñez, M. A., Simberloff, D. & Relva, M. A. Seed predation as a barrier to alien conifer invasions. Biol. Invasions 10, 1389–1398 (2008).

    Google Scholar 

  • 22.

    Nuñez, M. A., Relva, M. A. & Simberloff, D. Enemy release or invasional meltdown? Deer preference for exotic and native trees on Isla Victoria Argentina. Austral. Ecol. 33, 317–323 (2008).

    Google Scholar 

  • 23.

    Nuñez, M. A. & Medley, K. A. Pine invasions: climate predicts invasion success; something else predicts failure. Divers. Distrib. 17, 703–713 (2011).

    Google Scholar 

  • 24.

    Relva, M. A., Nuñez, M. A. & Simberloff, D. Introduced deer reduce native plant cover and facilitate invasion of non-native tree species: evidence for invasional meltdown. Biol. Invasions 12, 303–311 (2010).

    Google Scholar 

  • 25.

    Osem, Y., Lavi, A. & Rosenfeld, A. Colonization of Pinus halepensis in Mediterranean habitats: consequences of afforestation, grazing and fire. Biol. Invasions 13, 485–498 (2011).

    Google Scholar 

  • 26.

    de Villalobos, A., Zalba, S. M. & Peláez, D. V. Pinus halepensis invasion in mountain pampean grassland: effects of feral horses grazing on seedling establishment. Environ. Res. 111, 953–959 (2011).

    PubMed  Google Scholar 

  • 27.

    Sarasola, M. M., Rusch, V. E., Schlichter, T. M. & Ghersa, C. M. Invasión de coníferas forestales en áreas de estepa y bosques de ciprés de la cordillera en la Región Andino Patagónica. Ecol. Austral. 16, 143–156 (2006).

    Google Scholar 

  • 28.

    Chauchard, S., Pille, G. & Carcaillet, C. Large herbivores control the invasive potential of nonnative Austrian black pine in a mixed deciduous Mediterranean forest. Can. J. For. Res. 36, 1047–1053 (2006).

    Google Scholar 

  • 29.

    Boulant, N., Kunstler, G., Rambal, S. & Lepart, J. Seed supply, drought, and grazing determine spatio-temporal patterns of recruitment for native and introduced invasive pines in grasslands. Divers. Distrib. 14, 862–874 (2008).

    Google Scholar 

  • 30.

    Becerra, P. I. & Bustamante, R. O. The effect of herbivory on seedling survival of the invasive exotic species Pinus radiata and Eucalyptus globulus in a Mediterranean ecosystem of Central Chile. For. Ecol. Manag. 256, 1573–1578 (2009).

    Google Scholar 

  • 31.

    Bartolomé, J., Boada, M., Saurí, D., Sánchez, S. & Plaixats, J. Conifer dispersion on subalpine pastures in Northeastern Spain: characteristics and implications for rangeland management. Rangel. Ecol. Manag. 61, 218–225 (2008).

    Google Scholar 

  • 32.

    Forbes, J. M. Learning about food: conditioned preferences and aversions. In Voluntary Food Intake and Diet Selection in Farm Animals (ed. Forbes, J. M.) 117–143 (CABI, Wallingford, 2007).

    Google Scholar 

  • 33.

    Danell, K., Bergström, R. & Edenius, L. Effects of large mammalian browsers on architecture, biomass, and nutrients of woody plants. Source J. Mammal. 75, 833–844 (1994).

    Google Scholar 

  • 34.

    McNaughton, S. J. Grazing as an optimization process: grass-ungulate relationships in the Serengeti. Am. Nat. 113, 691–703 (1979).

    Google Scholar 

  • 35.

    Canham, C. D., McAninch, J. B. & Wood, D. M. Effects of the frequency, timing, and intensity of simulated browsing on growth and mortality of tree seedlings. Can. J. For. Res. 24, 817–825 (1994).

    Google Scholar 

  • 36.

    Persson, I. L., Danell, K. & Bergström, R. Different moose densities and accompanied changes in tree morphology and browse production. Ecol. Appl. 15, 1296–1305 (2005).

    Google Scholar 

  • 37.

    Pollock, M. L., Lee, W. G., Walker, S. & Forrester, G. Ratite and ungulate preferences for woody New Zealand plants: influence of chemical and physical traits. N. Z. J. Ecol. 31, 68–78 (2007).

    Google Scholar 

  • 38.

    Duncan, A. J., Hartley, S. E. & Iason, G. R. The effect of monoterpene concentrations in Sitka Spruce (Picea sitchensis) on the browsing behavior of red deer (Cervus elaphus). Can. J. Zool. Can. Zool. 72, 1715–1720 (1994).

    CAS  Google Scholar 

  • 39.

    Kimball, B. A., Russell, J. H. & Ott, P. K. Phytochemical variation within a single plant species influences foraging behavior of deer. Oikos 121, 743–751 (2012).

    Google Scholar 

  • 40.

    Zhang, X. & States, J. S. Selective herbivory of Ponderosa pine by Abert squirrels: a re-examination of the role of terpenes. Biochem. Syst. Ecol. 19, 111–115 (1991).

    CAS  Google Scholar 

  • 41.

    Elliott, S. & Loudon, A. Effects of monoterpene odors on food selection by red deer calves (Cervus elaphus). J. Chem. Ecol. 13, 1343–1349 (1987).

    CAS  PubMed  Google Scholar 

  • 42.

    Bryant, J. P. et al. Interactions between woody plants and browsing mammals mediated by secondary metabolites. Annu. Rev. Ecol. Syst. 22, 431–446 (1991).

    Google Scholar 

  • 43.

    Bryant, J. P., Reichardt, P. B. & Clausen, T. P. Chemically mediated interactions between woody plants and browsing mammals. J. Range Manag. 45, 18–24 (1992).

    Google Scholar 

  • 44.

    Baraza, E., Hódar, J. A. & Zamora, R. Consequences of plant-chemical diversity for domestic goat food preference in Mediterranean forests. Acta Oecol. 35, 117–127 (2009).

    ADS  Google Scholar 

  • 45.

    Moreira, X. et al. Trade-offs between constitutive and induced defences drive geographical and climatic clines in pine chemical defences. Ecol. Lett. 17, 537–546 (2014).

    PubMed  Google Scholar 

  • 46.

    Radwan, M. A. & Crouch, G. L. Selected chemical constituents and deer browsing preference of Douglas Fir. J. Chem. Ecol. 4, 675–683 (1978).

    CAS  Google Scholar 

  • 47.

    Frost, R. A. & Launchbaugh, K. L. Grazing for Rangeland Weed Managenent: a new look at an old tool. Rangelands 25, 43–47 (2003).

    Google Scholar 

  • 48.

    Ledgard, N. J. The spread of lodgepole pine (Pinus contorta, Dougl.) in New Zealand. For. Ecol. Manag. 141, 43–57 (2001).

    Google Scholar 

  • 49.

    Zamora-Nasca, L. B., Relva, M. A. & Núñez, M. A. Ungulates can control tree invasions: experimental evidence from nonnative conifers and sheep herbivory. Biol. Invasions 20, 583–591 (2018).

    Google Scholar 

  • 50.

    Crozier, E. R. & Ledgard, N. J. Palatability of wilding conifers and control by simulated sheep browsing. In Alternatives to the Chemical Control of Weeds. Proceedings of International Conference, Rotorua, July 1989. Bulletin No. 155 (eds Basset, C. et al.) 139–143 (Rotorua, Ministry of Forestry, Forest Research Institute, 1990).

    Google Scholar 

  • 51.

    Mayle, B. Domestic Stock Grazing to Enhance Woodland Biodiversity (Forestry Commission, Edinburgh, 1999).

    Google Scholar 

  • 52.

    Westoby, M. The LHS Strategy Scheme in Relation to Grazing and Fire. VIth International Rangeland Congress (Australian Rangeland Society, Canberra, 1999).

    Google Scholar 

  • 53.

    Westoby, M. An analysis of diet selection by large generalist herbivores. Am. Nat. 108, 290–304 (1974).

    Google Scholar 

  • 54.

    Villalba, J. J., Burritt, E. A. & Clair, S. B. S. Aspen (Populus tremuloides Michx.) intake and preference by mammalian herbivores: the role of plant secondary compounds and nutritional context. J. Chem. Ecol. 40, 1135–1145 (2014).

    CAS  PubMed  Google Scholar 

  • 55.

    Rhodes, A. C., Larsen, R. T., Maxwell, J. D. & St. Clair, S. B. Temporal patterns of ungulate herbivory and phenology of aspen regeneration and defense. Oecologia 188, 707–719 (2018).

    ADS  PubMed  Google Scholar 

  • 56.

    Cingolani, A. M., Posse, G. & Collantes, M. B. Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands. J. Appl. Ecol. 42, 50–59 (2005).

    Google Scholar 

  • 57.

    Bran, D., Ayesa, J. & Lopez, C. Áreas ecológicas de Neuquen (Instituto Nacional de Tecnología Agropecuaria – INTA, Buenos Aires, 2002).

    Google Scholar 

  • 58.

    Mueller, J. Producción ovina en Argentina, situación actual y perspectivas futuras. Boletín Inf. INTA 200, 19–21 (2001).

    Google Scholar 

  • 59.

    Aguiar, M. R. & Sala, O. E. Interactions among grasses, shrubs, and herbivores in Patagonian grass-shrub steppes. Ecol. Austral. 8, 201–210 (1998).

    Google Scholar 

  • 60.

    Zamora-Nasca, L. B., Relva, M. A. & Núñez, M. A. Ungulate browsing on introduced pines differs between plant communities: implications for invasion process and management. Austral. Ecol. 44, 973–982 (2019).

    Google Scholar 

  • 61.

    Bonvissuto, G. L., Somlo, R. C., Lanciotti, M. L., Carteau, A. G. & Busso, C. A. Guías de Condición para Pastizales Naturales de ‘Precordillera’, ‘Sierras y Mesetas’ y ‘Monte Austral’ de Patagonia (Instituto Nacional de Tecnología Agrpecuaria – INTA, Buenos Aires, 2008).

    Google Scholar 

  • 62.

    Siffredi, G. L. et al. Guía para la evaluación de Pastizales. Para las áreas ecológicas de Sierras y Mesetas Occidentales y de Monte de Patagonia Norte (INTA, Buenos Aires, 2013).

    Google Scholar 

  • 63.

    SENASA. Manual de Bienestar Animal Un enfoqe práctico para el buen manejo de especies domésticas durante su tenencia, producción, concentración, transporte y faena (Servicio Nacional de Sanidad y Calidad Agroalimentaria, Buenos Aires, 2015).

    Google Scholar 

  • 64.

    Álvarez, J. M. et al. Bienestar animal Ovino (2005).

  • 65.

    Mumm, R. & Hilker, M. Direct and indirect chemical defence of pine against folivorous insects. Trends Plant Sci. 11, 351–358 (2006).

    CAS  PubMed  Google Scholar 

  • 66.

    Moreira, X. et al. Inducibility of chemical defences by two chewing insect herbivores in pine trees is specific to targeted plant tissue, particular herbivore and defensive trait. Phytochemistry 94, 113–122 (2013).

    CAS  PubMed  Google Scholar 

  • 67.

    Crawley, M. J. Mixed-effect models. In The R Book 681–714 (Wiley, 2013).

  • 68.

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and extensions in Ecology with R (Springer, Berlin, 2009).

    Google Scholar 

  • 69.

    Lenth, M. R. Package ‘lsmeans’. CRAN (2013).

  • 70.

    Bates, D. M., Machler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • 71.

    Skaug, H., Fournier, D., Nielsen, A., Magnusson, A. & Bolker, B. M. Generalized linear mixed models using ‘AD model builder’. Optim. Methods Softw. 27, 233–249 (2012).

    MathSciNet  Google Scholar 

  • 72.

    Hothorn, T. et al. Package ‘multcomp’ – Simultaneous Inference in General Parametric Models. (2017). https://cran.r-project.org/web/packages/multcomp/multcomp.pdf

  • 73.

    Giraudoux, P., Antonietti, J.-P., Beale, C., Pleydell, D. & Treglia, M. Package ‘pgirmess’: Spatial Analysis and Data Mining for Field Ecologists (2018). https://doi.org/10.1145/3097983.3098168doi:

  • 74.

    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 027–046 (2013).

    Google Scholar 

  • 75.

    Peuke, A. D. Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis. J. Exp. Bot. 61, 635–655 (2010).

    CAS  PubMed  Google Scholar 

  • 76.

    Wickham, H. ggplot2. Elegant Graphics for Data Analysis (2009). doi:10.1007/978-0-387-98141-3.

  • 77.

    R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria. https://www.R-project.org/ (2018).

  • 78.

    Zamora, R., Gómez, J. M., Hódar, J. A., Castro, J. & García, D. Effect of browsing by ungulates on sapling growth of Scots pine in a mediterranean environment: consequences for forest regeneration. For. Ecol. Manag. 144, 33–42 (2001).

    Google Scholar 

  • 79.

    Estell, R. E. et al. Effects of volatile compounds on consumption of alfalfa pellets by sheep. J. Anim. Sci. 76, 228–233 (1998).

    CAS  PubMed  Google Scholar 

  • 80.

    Kruska, D. & Stephan, H. Volumenvergleich allokortikaler Hirnzentren hei Wild- und Hausschweinen. Acta Anat. 84, 387–415 (1973).

    CAS  PubMed  Google Scholar 

  • 81.

    Arnold, G. W., De Boer, E. S. & Boundy, C. A. P. The influence of odour and taste on the food preferences and food intake of sheep. Aust. J. Agric. Res. 31, 571–587 (1980).

    CAS  Google Scholar 

  • 82.

    Tribe, D. E. The importance of the sense of smell to the grazing sheep. J. Agric. Sci. 39, 309–312 (1949).

    Google Scholar 

  • 83.

    Villalba, J. J. & Provenza, F. D. Effects of food structure and nutritional quality and animal nutritional state on intake behaviour and food preferences of sheep. Appl. Anim. Behav. Sci. 63, 145–163 (1999).

    Google Scholar 

  • 84.

    Evju, M., Austrheim, G., Halvorsen, R. & Mysterud, A. Grazing responses in herbs in relation to herbivore selectivity and plant traits in an alpine ecosystem. Oecologia 161, 77–85 (2009).

    ADS  PubMed  Google Scholar 

  • 85.

    Cadenasso, M. L., Pickett, S. T. A. & Morin, P. J. Experimental test of the role of mammalian herbivores on old field succession: Community structure and seedling survival. J. Torrey Bot. Soc. 129, 228–237 (2002).

    Google Scholar 

  • 86.

    Capó, E. A., Aguilar, R. & Renison, D. Livestock reduces juvenile tree growth of alien invasive species with a minimal effect on natives: a field experiment using exclosures. Biol. Invasions 18, 2943–2950 (2016).

    Google Scholar 

  • 87.

    Dimock, E. J., Silen, R. R. & Allen, V. E. Genetic resistance in Douglas -fir to damage by snowshoe hare and black-tailed deer. For. Sci. 22, 106–121 (1976).

    Google Scholar 

  • 88.

    Mobæk, R., Mysterud, A., Egil Loe, L., Holand, Ø & Austrheim, G. Density dependent and temporal variability in habitat selection by a large herbivore; an experimental approach. Oikos 118, 209–218 (2009).

    Google Scholar 

  • 89.

    Iason, G. R., O’Reilly-Wapstra, J. M., Brewer, M. J., Summers, R. W. & Moore, B. D. Do multiple herbivores maintain chemical diversity of Scots pine monoterpenes? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 366, 1337–1345 (2011).

    PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Iron is not everything: unexpected complex metabolic responses between iron-cycling microorganisms

    Variations in foliar carbon:nitrogen and nitrogen:phosphorus ratios under global change: a meta-analysis of experimental field studies