in

Vertical distribution of brittle star larvae in two contrasting coastal embayments: implications for larval transport

  • 1.

    Uthicke, S., Schaffelke, B. & Byrne, M. A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol. Monogr. 79, 3–24 (2009).

    Google Scholar 

  • 2.

    Sala, E. & Knowlton, N. Global marine biodiversity trends. Annu. Rev. Environ. Resour. 31, 93–122 (2006).

    Google Scholar 

  • 3.

    Fabricius, K. E., Okaji, K. & De’ath, G. Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation. Coral Reefs 29, 593–605 (2010).

    ADS  Google Scholar 

  • 4.

    Hock, K., Wolff, N. H., Condie, S. A., Anthony, K. R. N. & Mumby, P. J. Connectivity networks reveal the risks of crown-of-thorns starfish outbreaks on the Great Barrier Reef. J. Appl. Ecol. 51, 1188–1196 (2014).

    Google Scholar 

  • 5.

    Wolfe, K., Graba-Landry, A., Dworjanyn, S. A. & Byrne, M. Larval phenotypic plasticity in the boom-and-bust crown-of-thorns seastar, Acanthaster planci. Mar. Ecol. Prog. Ser. 539, 179–189 (2015).

    ADS  Google Scholar 

  • 6.

    Pearson, T. H., Josefson, A. B. & Rosenberg, R. Petersen’s benthic stations revisited. I. Is the Kattegatt becoming eutrophic?. J. Exp. Mar. Biol. Ecol. 92, 157–206 (1985).

    Google Scholar 

  • 7.

    Barnes, D. K. A., Verling, E., Crook, A., Davidson, I. & O’Mahoney, M. Local population disappearance follows (20 yr after) cycle collapse in a pivotal ecological species. Mar. Ecol. Prog. Ser. 226, 311–313 (2002).

    ADS  Google Scholar 

  • 8.

    Hereu, B. et al. Multiple processes regulate long-term population dynamics of sea urchins on Mediterranean rocky reefs. PLoS ONE 7, e36901 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Guillou, M. Biotic and abiotic interactions controlling starfish outbreaks in the Bay of Douarnenez, Brittany, France. Oceonol. Acta 19, 415–420 (1996).

    Google Scholar 

  • 10.

    Van Nes, E. H., Amaro, T., Scheffer, M. & Duineveld, G. C. A. Possible mechanisms for a marine benthic regime shift in the North Sea. Mar. Ecol. Prog. Ser. 330, 39–47 (2007).

    ADS  Google Scholar 

  • 11.

    Blanchet-Aurigny, A. et al. Multi-decadal changes in two co-occurring ophiuroid populations. Mar. Ecol. Prog. Ser. 460, 79–90 (2012).

    ADS  Google Scholar 

  • 12.

    Guillou, M., Blanchet-Aurigny, A. & Le Goaster, E. Density fluctuations of the ophiuroids Ophiothrix fragilis and Ophiocomina nigra in the Bay of Douarnenez, Brittany, France. Mar. Biodivers. Rec. 6, 1–5 (2013).

    Google Scholar 

  • 13.

    Blanchet-Aurigny, A., Dubois, S. F., Quéré, C., Guillou, M. & Pernet, F. Trophic niche of two co-occurring ophiuroid species in impacted coastal systems, derived from fatty acid and stable isotope analyses. Mar. Ecol. Prog. Ser. 525, 127–141 (2015).

    ADS  CAS  Google Scholar 

  • 14.

    Murat, A., Méar, Y., Poizot, E., Dauvin, J. C. & Beryouni, K. Silting up and development of anoxic conditions enhanced by high abundance of the geoengineer species Ophiothrix fragilis. Cont. Shelf Res. 118, 11–22 (2016).

    ADS  Google Scholar 

  • 15.

    Geraldi, N. R. et al. Aggregations of brittle stars can perform similar ecological roles as mussel reefs. Mar. Ecol. Prog. Ser. 563, 157–167 (2017).

    ADS  CAS  Google Scholar 

  • 16.

    Mortensen, T. Die Echinodermen-larven. Nord. Plankt. 9, 1–30 (1900).

    Google Scholar 

  • 17.

    Mortensen, T. Studies of the development and larval forms of Echinoderms. Copenhagen 266 pp (1921).

  • 18.

    Strathmann, R. R. The feeding behavior of planktotrophic echinoderm larvae: mechanisms, regulation, and rates of suspension-feeding. J. Exp. Mar. Biol. Ecol. 6, 109–160 (1971).

    Google Scholar 

  • 19.

    Cowen, R. K., Gawarkiewicz, G., Pineda, J., Thorrold, S. R. & Werner, F. E. Population connectivity in marine systems: An overview. Oceanography 20, 14–21 (2007).

    Google Scholar 

  • 20.

    Uthicke, S., Doyle, J., Duggan, S., Yasuda, N. & McKinnon, A. D. Outbreak of coral-eating crown-of-thorns creates continuous cloud of larvae over 320 km of the Great Barrier Reef. Sci. Rep. 5, 1–7 (2015).

    Google Scholar 

  • 21.

    Pratchett, M. S. et al. Thirty years of research on crown-of-thorns starfish (1986–2016): Scientific advances and emerging opportunities. Diversity 9, 1–50 (2017).

    Google Scholar 

  • 22.

    Wolfe, K., Graba-Landry, A., Dworjanyn, S. A. & Byrne, M. Superstars: Assessing nutrient thresholds for enhanced larval success of Acanthaster planci, a review of the evidence. Mar. Pollut. Bull. 116, 307–314 (2017).

    CAS  PubMed  Google Scholar 

  • 23.

    Metaxas, A. & Saunders, M. Quantifying the ‘Bio-’ components in biophysical models of larval transport in marine benthic invertebrates: advances and pitfalls. Biol. Bull. 216, 257–272 (2009).

    PubMed  Google Scholar 

  • 24.

    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).

    PubMed  Google Scholar 

  • 25.

    Pineda, J., Hare, J. A. & Sponaugle, S. Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20, 22–39 (2007).

    Google Scholar 

  • 26.

    Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).

    PubMed  Google Scholar 

  • 27.

    DiBacco, C., Sutton, D. & McConnico, L. Vertical migration behavior and horizontal distribution of brachyuran larvae in a low-inflow estuary: Implications for bay-ocean exchange. Mar. Ecol. Prog. Ser. 217, 191–206 (2001).

    ADS  Google Scholar 

  • 28.

    Chia, F. S. Locomotion of marine invertebrate larvae: A review. Can. J. Zool. 62, 1205–1222 (1984).

    Google Scholar 

  • 29.

    Thiébaut, E., Dauvin, J. C. & Lagadeuc, Y. Transport of Owenia fusiformis larvae (Annelida: Polychaeta) in the Bay of Seine. I. Vertical distribution in relation to water column stratification and ontogenetic vertical migration. Mar. Ecol. Prog. Ser. 80, 29–39 (1992).

    ADS  Google Scholar 

  • 30.

    Kunze, H. B., Morgan, S. G. & Lwiza, K. M. Field test of the behavioral regulation of larval transport. Mar. Ecol. Prog. Ser. 487, 71–87 (2013).

    ADS  Google Scholar 

  • 31.

    Miyake, Y. et al. Roles of vertical behavior in the open-ocean migration of teleplanic larvae: A modeling approach to the larval transport of Japanese spiny lobster. Mar. Ecol. Prog. Ser. 539, 93–109 (2015).

    ADS  Google Scholar 

  • 32.

    Gallager, S. M., Manuel, J. L., Manning, D. A. & O’Dor, R. Ontogenetic changes in the vertical distribution of giant scallop larvae, Placopecten magellanicus, in 9-m deep mesocosms as a function of light, food, and temperature stratification. Mar. Biol. 124, 679–692 (1996).

    Google Scholar 

  • 33.

    Daigle, R. M. & Metaxas, A. Modeling of the larval response of green sea urchins to thermal stratification using a random walk approach. J. Exp. Mar. Biol. Ecol. 438, 14–23 (2012).

    Google Scholar 

  • 34.

    Bonicelli, J. et al. Diel vertical migration and cross-shore distribution of barnacle and bivalve larvae in the central Chile inner-shelf. J. Exp. Mar. Biol. Ecol. 485, 35–46 (2016).

    Google Scholar 

  • 35.

    Lefebvre, A. & Davoult, D. Vertical distribution of the ophioplutei of Ophiothrix fragilis (Echinodermata: Ophiuroidea) in the Dover Strait (Eastern English Channel, France). In Fifth European Conference on Echinoderms—Echinoderm Research 1998 (eds Carnevali, M. D. C. & Bonasoro, F.) 505–509 (Balkema, Rotterdam, 1998).

    Google Scholar 

  • 36.

    Grünbaum, D. & Strathmann, R. R. Form, performance and trade-offs in swimming and stability of armed larvae. J. Mar. Res. 61, 659–691 (2003).

    Google Scholar 

  • 37.

    Roy, A., Metaxas, A. & Ross, T. Swimming patterns of larval Strongylocentrotus droebachiensis in turbulence in the laboratory. Mar. Ecol. Prog. Ser. 453, 117–127 (2012).

    ADS  Google Scholar 

  • 38.

    Sameoto, J. A., Ross, T. & Metaxas, A. The effect of flow on larval vertical distribution of the sea urchin, Strongylocentrotus droebachiensis. J. Exp. Mar. Biol. Ecol. 383, 156–163 (2010).

    Google Scholar 

  • 39.

    Fuchs, H. L., Gerbi, G. P., Hunter, E. J., Christman, A. J. & Diez, F. J. Hydrodynamic sensing and behavior by oyster larvae in turbulence and waves. J. Exp. Biol. 218, 1419–1432 (2015).

    PubMed  Google Scholar 

  • 40.

    Wheeler, J. D., Chan, K. Y. K., Anderson, E. J. & Mullineaux, L. S. Ontogenetic changes in larval swimming and orientation of pre-competent sea urchin Arbacia punctulata in turbulence. J. Exp. Biol. 219, 1303–1310 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Strathmann, R. R. & Grünbaum, D. Good eaters, poor swimmers: compromises in larval form. Integr. Comp. Biol. 46, 312–322 (2006).

    PubMed  Google Scholar 

  • 42.

    Forward, R. B., Cronin, T. W. & Stearns, D. E. Control of diel vertical migration: Photoresponses of a larval crustacean. Limnol. Oceanogr. 29, 146–154 (1984).

    ADS  Google Scholar 

  • 43.

    Forward, R. B. Behavioral responses of larvae of the crab Rhithropanopeus harrisii (Brachyura: Xanthidae) during diel vertical migration. Mar. Biol. 90, 9–18 (1985).

    Google Scholar 

  • 44.

    Garland, E. D., Zimmer, C. A. & Lentz, S. J. Larval distributions in inner-shelf waters: The roles of wind-driven cross-shelf currents and diel vertical migrations. Limnol. Oceanogr. 47, 803–817 (2002).

    ADS  Google Scholar 

  • 45.

    Pennington, J. T. & Emlet, R. B. Ontogenetic and diel vertical migration of a planktonic echinoid larva, Dendraster excentricus (Eschscholtz): Occurrence, causes, and probable consequences. J. Exp. Mar. Biol. Ecol. 104, 69–95 (1986).

    Google Scholar 

  • 46.

    Lesser, M. P. & Barry, T. M. Survivorship, development, and DNA damage in echinoderm embryos and larvae exposed to ultraviolet radiation (290–400 nm). J. Exp. Mar. Biol. Ecol. 292, 75–91 (2003).

    CAS  Google Scholar 

  • 47.

    Tauchman, E. C. & Pomory, C. M. Effect of ultraviolet radiation on growth and percent settlement of larval Lytechinus variegatus (Echinodermata: Echinoidea). Invertebr. Reprod. Dev. 55, 152–161 (2011).

    Google Scholar 

  • 48.

    Metaxas, A. & Burdett-Coutts, V. Response of invertebrate larvae to the presence of the ctenophore Bolinopsis infundibulum, a potential predator. J. Exp. Mar. Biol. Ecol. 334, 187–195 (2006).

    Google Scholar 

  • 49.

    Raby, D., Lagadeuc, Y., Dodson, J. J. & Mingelbier, M. Relationship between feeding and vertical distribution of bivalve larvae in stratified and mixed waters. Mar. Ecol. Prog. Ser. 103, 275–284 (1994).

    ADS  Google Scholar 

  • 50.

    Burdett-Coutts, V. & Metaxas, A. The effect of the quality of food patches on larval vertical distribution of the sea urchins Lytechinus variegatus (Lamarck) and Strongylocentrotus droebachiensis (Mueller). J. Exp. Mar. Biol. Ecol. 308, 221–236 (2004).

    Google Scholar 

  • 51.

    Sameoto, J. A. & Metaxas, A. Interactive effects of haloclines and food patches on the vertical distribution of 3 species of temperate invertebrate larvae. J. Exp. Mar. Biol. Ecol. 367, 131–141 (2008).

    Google Scholar 

  • 52.

    Birrien, J. L., Wafar, M. V. M., Le Corre, P. & Riso, R. Nutrients and primary production in a shallow stratified ecosystem in the Iroise Sea. J. Plankton Res. 13, 721–742 (1991).

    Google Scholar 

  • 53.

    Le Corre, P., L’Helguen, S., Morin, P. & Birrien, J. L. Conditions de formation d’eaux colorées toxiques sur le plateau continental Manche-Atlantique; cas de Gyrodinium cf. aureolum. Hydroécologie Appliquée 2, 173–188 (1992).

    Google Scholar 

  • 54.

    Clay, T. W. & Grünbaum, D. Morphology-flow interactions lead to stage-selective vertical transport of larval sand dollars in shear flow. J. Exp. Biol. 213, 1281–1292 (2010).

    CAS  PubMed  Google Scholar 

  • 55.

    Soars, N. A. & Byrne, M. Contrasting arm elevation angles of multi- and two-armed sea urchin echinoplutei supports Grünbaum and Strathmann’s hydromechanical model. Mar. Biol. 162, 607–616 (2015).

    Google Scholar 

  • 56.

    Chan, K. Y. K., Grünbaum, D., Arnberg, M. & Dupont, S. Impacts of ocean acidification on survival, growth, and swimming behaviours differ between larval urchins and brittlestars. ICES J. Mar. Sci. 73, 951–961 (2016).

    Google Scholar 

  • 57.

    Burke, R. D. Structure of the digestive tract of the pluteus larva of Dendraster excentricus (Echinodermata: Echinoida). Zoomorphology 98, 209–225 (1981).

    Google Scholar 

  • 58.

    Chadwick, H. C. Echinoderm larvae. L.M.B.C. Mem. XXII (1914).

  • 59.

    Mileikovsky, S. A. Speed of active movement of pelagic larvae of marine bottom invertebrates and their ability to regulate their vertical position. Mar. Biol. 23, 11–17 (1973).

    Google Scholar 

  • 60.

    Fortier, L. & Leggett, W. C. Fickian transport and the dispersal of fish larvae in estuaries. Can. J. Fish. Aquat. Sci. 39, 1150–1163 (1982).

    Google Scholar 

  • 61.

    Knights, A. M., Crowe, T. P. & Burnell, G. Mechanisms of larval transport: Vertical distribution of bivalve larvae varies with tidal conditions. Mar. Ecol. Prog. Ser. 326, 167–174 (2006).

    ADS  Google Scholar 

  • 62.

    Rigal, F., Viard, F., Ayata, S. D. & Comtet, T. Does larval supply explain the low proliferation of the invasive gastropod Crepidula fornicata in a tidal estuary?. Biol. Invasions 12, 3171–3186 (2010).

    Google Scholar 

  • 63.

    Herbert, R. J. H. et al. Invasion in tidal zones on complex coastlines: Modelling larvae of the non-native Manila clam, Ruditapes philippinarum, in the UK. J. Biogeogr. 39, 585–599 (2012).

    Google Scholar 

  • 64.

    Hock, K. et al. Controlling range expansion in habitat networks by adaptively targeting source populations. Conserv. Biol. 30, 856–866 (2016).

    PubMed  Google Scholar 

  • 65.

    Dupont, S., Havenhand, J., Thorndyke, W., Peck, L. & Thorndyke, M. Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar. Ecol. Prog. Ser. 373, 285–294 (2008).

    ADS  CAS  Google Scholar 

  • 66.

    Strathmann, R. R., Fenaux, L. & Strathmann, M. F. Heterochronic developmental plasticity in larval sea urchins and its implications for evolution of nonfeeding larvae. Evolution 46, 972–986 (1992).

    PubMed  Google Scholar 

  • 67.

    Augris, C. et al. Atlas thématique de l’environnement marin de la baie de Douarnenez (Finistère). Edition IFREMER, Brest (2005).

  • 68.

    Bodin, P., Boucher, D., Guillou, J. & Guillou, M. The trophic system of the benthic communities in the bay of Douarnenez (Brittany). In Proceedings of the 19th European Marine Biology Symposium, Plymouth, Devon, UK, 16–21 September 1984 (ed Gibbs, P. E.) 361–370 (Cambridge University Press, 1985).

  • 69.

    Blanchet, A., Chevalier, C., Gaffet, J. & Hamon, D. Bionomie benthique subtidale en baie de Douarnenez. DEL/EC/BB.RST.04.01, Ifremer (2004).

  • 70.

    Del Amo, Y. et al. Impacts of high-nitrate freshwater inputs on macrotidal ecosystems. I. Seasonal evolution of nutrient limitation for the diatom-dominated phytoplankton of the Bay of Brest (France). Mar. Ecol. Prog. Ser. 161, 213–224 (1997).

    ADS  Google Scholar 

  • 71.

    Bowmer, T. Reproduction in Amphiura filiformis (Echinodermata: Ophiuroidea): Seasonality in gonad development. Mar. Biol. 68, 281–290 (1982).

    Google Scholar 

  • 72.

    Lefebvre, A., Davoult, D., Gentil, F. & Janquin, M. Spatio-temporal variability in the gonad growth of Ophiothrix fragilis (Echinodermata: Ophiuroidea) in the English Channel and estimation of carbon and nitrogen outputs towards the pelagic system. Hydrobiologia 414, 25–34 (1999).

    Google Scholar 

  • 73.

    Narasimhamurti, N. The development of Ophiocoma nigra. Q. J. Microsc. Sci. 76, 63–88 (1933).

    Google Scholar 

  • 74.

    Morgan, R. & Jangoux, M. Larval morphometrics and influence of adults on settlement in the gregarious ophiuroid Ophiothrix fragilis (Echinodermata). Biol. Bull. 208, 92–99 (2005).

    PubMed  Google Scholar 

  • 75.

    Dupont, S., Thorndyke, W., Thorndyke, M. C. & Burke, R. D. Neural development of the brittlestar Amphiura filiformis. Dev. Genes Evol. 219, 159–166 (2009).

    PubMed  Google Scholar 

  • 76.

    Schlitzer, R. Ocean Data View. odv.awi.de (2018).

  • 77.

    Lazure, P. & Dumas, F. An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv. Water Resour. 31, 233–250 (2008).

    ADS  Google Scholar 

  • 78.

    Jouanneau, N., Sentchev, A. & Dumas, F. Numerical modelling of circulation and dispersion processes in Boulogne-sur-mer harbour (Eastern English Channel): Sensitivity to physical forcing and harbour design. Ocean Dyn. 63, 1321–1340 (2013).

    ADS  Google Scholar 

  • 79.

    Smagorinsky, J. General circulation experiments with the primitive equation. I. The basic experiment. Mon. Weather Rev. 111, 99–165 (1963).

    ADS  Google Scholar 

  • 80.

    Lazure, P., Garnier, V., Dumas, F., Herry, C. & Chifflet, M. Development of a hydrodynamic model of the Bay of Biscay: Validation of hydrology. Cont. Shelf Res. 29, 985–997 (2009).

    ADS  Google Scholar 

  • 81.

    Caillaud, M., Petton, S., Dumas, F., Rochette, S. & Mickael, V. Rejeu hydrodynamique à 500 m de résolution avec le modèle MARS3D-AGRIF-Zone Manche-Gascogne. Ifremer https://doi.org/10.12770/3edee80f-5a3e-42f4-9427-9684073c87f5 (2016).

    Article  Google Scholar 

  • 82.

    Frontier, S. Sur une méthode d’analyse faunistique rapide du zooplancton. J. Exp. Mar. Biol. Ecol. 3, 18–26 (1969).

    Google Scholar 

  • 83.

    MacBride, E. W. The development of Ophiothrix fragilis. J. Cell Sci. 51, 557–606 (1907).

    Google Scholar 

  • 84.

    Mortensen, T. Handbook of the Echinoderms of the British Isles (Oxford University Press, London, 1927).

    Google Scholar 

  • 85.

    Geiger, S. R. Echinodermata: Larvae. Classes: Ophiuroidea and Echinoidea (Plutei). In Fiches d’identification du zooplancton, Sheet 105 (eds Fraser, J. H. & Hansen, V. K.) 1–5 (Andr. Fred. Høst & Fils, Copenhagen, 1964).

    Google Scholar 

  • 86.

    Stöhr, S. Who’s who among baby brittle stars (Echinodermata: Ophiuroidea): Postmetamorphic development of some North Atlantic forms. Zool. J. Linn. Soc. 143, 543–576 (2005).

    Google Scholar 

  • 87.

    Planque, B., Lazure, P. & Jegou, A. M. Typology of hydrological structures modelled and observed over the Bay of Biscay shelf. Sci. Mar. 70, 43–50 (2006).

    Google Scholar 

  • 88.

    Tapia, F. J., DiBacco, C., Jarrett, J. & Pineda, J. Vertical distribution of barnacle larvae at a fixed nearshore station in southern California: stage-specific and diel patterns. Estuar. Coast. Shelf Sci. 86, 265–270 (2010).

    ADS  Google Scholar 

  • 89.

    Beet, A., Solow, A. R. & Bollens, S. M. Comparing vertical plankton profiles with replication. Mar. Ecol. Prog. Ser. 262, 285–287 (2003).

    ADS  Google Scholar 

  • 90.

    Hayek, L.-A. C. & Buzas, M. A. Surveying natural populations: quantitative tools for assessing biodiversity (Columbia University Press, New York, 1997).

    Google Scholar 

  • 91.

    Rowe, P. M. & Epifanio, C. E. Flux and transport of larval weakfish in Delaware Bay, USA. Mar. Ecol. Prog. Ser. 110, 115–120 (1994).

    ADS  Google Scholar 


  • Source: Ecology - nature.com

    Iron is not everything: unexpected complex metabolic responses between iron-cycling microorganisms

    Variations in foliar carbon:nitrogen and nitrogen:phosphorus ratios under global change: a meta-analysis of experimental field studies