in

Coccolithophore community response to ocean acidification and warming in the Eastern Mediterranean Sea: results from a mesocosm experiment

  • 1.

    Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Sarmiento, J. L. et al. Response of ocean ecosystems to climate warming. Global Biogeochem. Cycles 18, GB3003 (2004).

    ADS  Google Scholar 

  • 3.

    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Pachauri, R. K. et al.) (IPCC, 2014).

  • 4.

    IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O. et al.) (IPCC, 2019).

  • 5.

    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    ADS  Google Scholar 

  • 6.

    Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 33, 1–4 (2006).

    Google Scholar 

  • 7.

    Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Pérez, T. Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260 (2010).

    PubMed  Google Scholar 

  • 8.

    Adloff, F. et al. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dyn. 45, 2775–2802 (2015).

    Google Scholar 

  • 9.

    Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 8, 972–980 (2018).

    ADS  Google Scholar 

  • 10.

    Schneider, A., Wallace, D. W. R. & Körtzinger, A. Alkalinity of the Mediterranean Sea. Geophys. Res. Lett. 34, 1–5 (2007).

    Google Scholar 

  • 11.

    Goyet, C. et al. Thermodynamic forecasts of the mediterranean sea acidification. Mediterr. Mar. Sci. 17, 508–518 (2016).

    Google Scholar 

  • 12.

    IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (eds. Solomon, S. et al.) (IPCC, 2007).

  • 13.

    Lionello, P. & Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Chang. 18, 1481–1493 (2018).

    Google Scholar 

  • 14.

    Sakalli, A. Sea surface temperature change in the Mediterranean Sea under climate change: a linear model for simulation of the sea surface temperature up to 2100. Appl. Ecol. Environ. Res. 15, 707–716 (2017).

    Google Scholar 

  • 15.

    Hausfather, Z. & Peters, G. P. Emissions: the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    D’Ortenzio, F. & D’Alcalà, M. R. On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosci. Discuss. 5, 2959–2983 (2009).

    ADS  Google Scholar 

  • 17.

    Krom, M. D., Kress, N. & Brenner, S. Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnol. Oceanogr. 36, 424–432 (1991).

    ADS  CAS  Google Scholar 

  • 18.

    Tanhua, T. et al. The Mediterranean Sea system: a review and an introduction to the special issue. Ocean Sci. 9, 789–803 (2013).

    ADS  Google Scholar 

  • 19.

    Gruber, N. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos. Trans. A. Math. Phys. Eng. Sci. 369, 1980–1996 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 20.

    Irwin, A. J. & Oliver, M. J. Are ocean deserts getting larger?. Geophys. Res. Lett. 36, 1–4 (2009).

    Google Scholar 

  • 21.

    Polovina, J. J., Howell, E. A. & Abecassis, M. Ocean’s least productive waters are expanding. Geophys. Res. Lett. 35, 2–6 (2008).

    Google Scholar 

  • 22.

    Corrales, X. et al. Future scenarios of marine resources and ecosystem conditions in the Eastern Mediterranean under the impacts of fishing, alien species and sea warming. Sci. Rep. 8, 14284 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Lacoue-Labarthe, T. et al. Impacts of ocean acidification in a warming Mediterranean Sea: an overview. Reg. Stud. Mar. Sci. 5, 1–11 (2016).

    Google Scholar 

  • 24.

    Danovaro, R. Climate change impacts on the biota and on vulnerable habitats of the deep Mediterranean Sea. Rend. Lincei. Sci. Fis. Nat. 29, 525–541 (2018).

    Google Scholar 

  • 25.

    Van der Wal, P., De Jong, E. W., Westbroek, P., De Bruijn, W. C. & Mulder-Stapel, A. A. Ultrastructural polysaccharide localization in calcifying and naked cells of the coccolithophorid Emiliania huxleyi. Protoplasma 118, 157–168 (1983).

    Google Scholar 

  • 26.

    Broecker, W. & Clark, E. Ratio of coccolith CaCO3 to foraminifera CaCO3 in late Holocene deep sea sediments. Paleoceanography 24, 1–11 (2009).

    Google Scholar 

  • 27.

    Milliman, J. D. Production and accumulation of calcium carbonate in the ocean: budget of a non-steady state. Glob. Biogeochem. Cycles 7, 927–957 (1993).

    ADS  CAS  Google Scholar 

  • 28.

    Oviedo, A., Ziveri, P., Álvarez, M. & Tanhua, T. Is coccolithophore distribution in the Mediterranean Sea related to seawater carbonate chemistry?. Ocean Sci. 11, 13–32 (2015).

    ADS  Google Scholar 

  • 29.

    Skejić, S. et al. Coccolithophore diversity in open waters of the middle Adriatic Sea in pre- and post-winter periods. Mar. Micropaleontol. 143, 30–45 (2018).

    ADS  Google Scholar 

  • 30.

    Meyer, J. & Riebesell, U. Reviews and synthesis: responses of coccolithophores to ocean acidification: a meta-analysis. Biogeosciences 12, 1671–1682 (2015).

    ADS  Google Scholar 

  • 31.

    Bach, L. T., Riebesell, U., Gutowska, M. A., Federwisch, L. & Schulz, K. G. A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Prog. Oceanogr. 135, 125–138 (2015).

    ADS  Google Scholar 

  • 32.

    Jin, P. & Gao, K. Reduced resilience of a globally distributed coccolithophore to ocean acidification: confirmed up to 2000 generations. Mar. Pollut. Bull. 103, 101–108 (2016).

    CAS  PubMed  Google Scholar 

  • 33.

    Riebesell, U. et al. Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification. Nat. Geosci. 10, 19–23 (2017).

    ADS  CAS  Google Scholar 

  • 34.

    Arnold, H. E., Kerrison, P. & Steinke, M. Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi. Glob. Chang. Biol. 19, 1007–1016 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 35.

    Benner, I. et al. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Philos. Trans. R. Soc. A 368, 1–17 (2013).

    Google Scholar 

  • 36.

    De Bodt, C., Van Oostende, N., Harlay, J., Sabbe, K. & Chou, L. Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: study of the calcite production, the coccolith morphology and the coccosphere size. Biogeosciences 7, 1401–1412 (2010).

    ADS  Google Scholar 

  • 37.

    Fiorini, S., Middelburg, J. J. & Gattuso, J.-P. Effects of elevated CO2 partial pressure and temperature on the coccolithophore Syracosphaera pulchra. Aquat. Microb. Ecol. 64, 221–232 (2011).

    Google Scholar 

  • 38.

    Milner, S., Langer, G., Grelaud, M. & Ziveri, P. Ocean warming modulates the effects of acidification on Emiliania huxleyi calcification and sinking. Limnol. Oceanogr. 61, 1322–1336 (2016).

    ADS  CAS  Google Scholar 

  • 39.

    Rouco, M., Branson, O., Lebrato, M. & Iglesias-Rodríguez, M. D. The effect of nitrate and phosphate availability on Emiliania huxleyi (NZEH) physiology under different CO2 scenarios. Front. Microbiol. 4, 1–11 (2013).

    Google Scholar 

  • 40.

    Schlüter, L. et al. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat. Clim. Chang. 4, 1024–1030 (2014).

    ADS  Google Scholar 

  • 41.

    Sett, S. et al. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO2. PLoS ONE 9, e88308 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Zondervan, I. The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores: a review. Deep Sea Res. II 54, 521–537 (2007).

    ADS  Google Scholar 

  • 43.

    Gafar, N. A., Eyre, B. D. & Schulz, K. G. A conceptual model for projecting coccolithophorid growth, calcification and photosynthetic carbon fixation rates in response to global ocean change. Front. Mar. Sci. 4, 1–18 (2018).

    Google Scholar 

  • 44.

    Maugendre, L., Guieu, C., Gattuso, J.-P. & Gazeau, F. Ocean acidification in the Mediterranean Sea: pelagic mesocosm experiments. A synthesis. Estuar. Coast. Shelf Sci. 186, 1–10 (2017).

    ADS  CAS  Google Scholar 

  • 45.

    Alvarez-Fernandez, S. et al. Plankton responses to ocean acidification: the role of nutrient limitation. Prog. Oceanogr. 165, 11–18 (2018).

    ADS  Google Scholar 

  • 46.

    Bach, L. T. et al. Influence of ocean acidification on a natural winter-to-summer plankton succession: first insights from a long-term mesocosm study draw attention to periods of low nutrient concentrations. PLoS ONE 11, e0159068 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Gazeau, F. et al. First mesocosm experiments to study the impacts of ocean acidification on plankton communities in the NW Mediterranean Sea (MedSeA project). Estuar. Coast. Shelf Sci. 186, 11–29 (2017).

    ADS  CAS  Google Scholar 

  • 48.

    Langer, G. et al. Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochem. Geophys. Geosyst. 7, 9006 (2006).

    ADS  Google Scholar 

  • 49.

    Langer, G., Nehrke, G., Probert, I., Ly, J. & Ziveri, P. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6, 2637–2646 (2009).

    ADS  CAS  Google Scholar 

  • 50.

    Oviedo, A. M., Ziveri, P. & Gazeau, F. Coccolithophore community response to increasing pCO2 in Mediterranean oligotrophic waters. Estuar. Coast. Shelf Sci. 186, 58–71 (2017).

    ADS  CAS  Google Scholar 

  • 51.

    Meier, K. J. S., Beaufort, L., Heussner, S. & Ziveri, P. The role of ocean acidification in Emiliania huxleyi coccolith thinning in the Mediterranean Sea. Biogeosciences 11, 2857–2869 (2014).

    ADS  CAS  Google Scholar 

  • 52.

    Cros, L. Planktonic Coccolithophores of the NW Mediterranean (Universitat de Barcelona, Barcelona, 2001). https://doi.org/10.1017/CBO9781107415324.004.

    Google Scholar 

  • 53.

    Ignatiades, L., Gotsis-Skretas, O., Pagou, K. & Krasakopoulou, E. Diversification of phytoplankton community structure and related parameters along a large-scale longitudinal east-west transect of the Mediterranean Sea. J. Plankton Res. 31, 411–428 (2009).

    Google Scholar 

  • 54.

    O’Brien, C. J., Vogt, M. & Gruber, N. Global coccolithophore diversity: drivers and future change. Prog. Oceanogr. 140, 27–42 (2016).

    ADS  Google Scholar 

  • 55.

    Cros, L. & Estrada, M. Holo-heterococcolithophore life cycles: ecological implications. Mar. Ecol. Prog. Ser. 492, 57–68 (2013).

    ADS  Google Scholar 

  • 56.

    Guerreiro, C. et al. Late winter coccolithophore bloom off central Portugal in response to river discharge and upwelling. Cont. Shelf Res. 59, 65–83 (2013).

    ADS  Google Scholar 

  • 57.

    D’Amario, B., Ziveri, P., Grelaud, M., Oviedo, A. & Kralj, M. Coccolithophore haploid and diploid distribution patterns in the Mediterranean Sea: can a haplo-diploid life cycle be advantageous under climate change?. J. Plankton Res. 39, 781–794 (2017).

    Google Scholar 

  • 58.

    Sommer, U., Paul, C. & Moustaka-Gouni, M. Warming and ocean acidification effects on phytoplankton: from species shifts to size shifts within species in a mesocosm experiment. PLoS ONE 10, 1–17 (2015).

    Google Scholar 

  • 59.

    Marie, D., Zhu, F., Balagué, V., Ras, J. & Vaulot, D. Eukaryotic picoplankton communities of the Mediterranean Sea in summer assessed by molecular approaches (DGGE, TTGE, QPCR). FEMS Microbiol. Ecol. 55, 403–415 (2006).

    CAS  PubMed  Google Scholar 

  • 60.

    Polat, S. & Uysal, Z. Abundance and biomass of picoplanktonic Synechococcus (Cyanobacteria) in a coastal ecosystem of the northeastern Mediterranean, the Bay of Iskenderum. Mar. Biol. Res. 5, 363–373 (2009).

    Google Scholar 

  • 61.

    Somot, S., Sevault, F. & Déqué, M. Transient climate change scenario simulation of the Mediterranean Sea for the twenty-first century using a high-resolution ocean circulation model. Clim. Dyn. 27, 851–879 (2006).

    Google Scholar 

  • 62.

    Planton, S. et al. The climate of the Mediterranean region in future climate projections. In The Climate of the Mediterranean Region: From the Past to the Future (ed. Lionello, P.) 449–502 (Elsevier, Amsterdam, 2012).

    Google Scholar 

  • 63.

    Shaltout, M. & Omstedt, A. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia 56, 411–443 (2014).

    Google Scholar 

  • 64.

    Mariotti, A., Pan, Y., Zeng, N. & Alessandri, A. Long-term climate change in the Mediterranean region in the midst of decadal variability. Clim. Dyn. 44, 1437–1456 (2015).

    Google Scholar 

  • 65.

    Darmaraki, S. et al. Future evolution of marine heatwaves in the Mediterranean Sea. Clim. Dyn. 53, 1371–1392 (2019).

    Google Scholar 

  • 66.

    Palmiéri, J. et al. Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea. Biogeosciences 12, 781–802 (2015).

    ADS  Google Scholar 

  • 67.

    Macias, D., Garcia-Gorriz, E. & Stips, A. Understanding the causes of recent warming of Mediterranean waters. How much could be attributed to climate change?. PLoS ONE 8, e81591 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 68.

    Pastor, F., Valiente, J. A. & Palau, J. L. Sea surface temperature in the mediterranean: trends and spatial patterns (1982–2016). In Meteorology and Climatology of the Mediterranean and Black Seas (eds Vilibić, I. et al.) 297–309 (Springer, New York, 2019).

    Google Scholar 

  • 69.

    Marullo, S., Artale, V. & Santoleri, R. The SST multidecadal variability in the Atlantic-Mediterranean region and its relation to AMO. J. Clim. 24, 4385–4401 (2011).

    ADS  Google Scholar 

  • 70.

    Jordà, G. et al. The Mediterranean Sea heat and mass budgets: estimates, uncertainties and perspectives. Prog. Oceanogr. 156, 174–208 (2017).

    Google Scholar 

  • 71.

    Nabat, P., Somot, S., Mallet, M., Sanchez-Lorenzo, A. & Wild, M. Contribution of anthropogenic sulfate aerosols to the changing Euro-Mediterranean climate since 1980. Geophys. Res. Lett. 41, 5605–5611 (2014).

    ADS  CAS  Google Scholar 

  • 72.

    Dell’Aquila, A. et al. Evaluation of simulated decadal variations over the Euro-Mediterranean region from ENSEMBLES to Med-CORDEX. Clim. Dyn. 51, 857–876 (2018).

    Google Scholar 

  • 73.

    Guiot, J. & Cramer, W. Climate change: the 2016 Paris Agreement thresholds and Mediterranean basin ecosystems. Science 354, 465–468 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 74.

    Darmaraki, S., Somot, S., Sevault, F. & Nabat, P. Past variability of Mediterranean Sea marine heatwaves. Geophys. Res. Lett. 46, 9813–9823 (2019).

    ADS  Google Scholar 

  • 75.

    Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Chang. Biol. 16, 2366–2375 (2010).

    ADS  Google Scholar 

  • 76.

    Marbà, N., Jordà, G., Agustí, S., Girard, C. & Duarte, C. M. Footprints of climate change on Mediterranean Sea biota. Front. Mar. Sci. 2, 1–11 (2015).

    ADS  Google Scholar 

  • 77.

    Ramón, M., Fernández, M. & Galimany, E. Development of mussel (Mytilus galloprovincialis) seed from two different origins in a semi-enclosed Mediterranean Bay (N.E. Spain). Aquaculture 264, 148–159 (2007).

    Google Scholar 

  • 78.

    Torrents, O., Tambutté, E., Caminiti, N. & Garrabou, J. Upper thermal thresholds of shallow vs. deep populations of the precious Mediterranean red coral Corallium rubrum (L.): assessing the potential effects of warming in the NW Mediterranean. J. Exp. Mar. Biol. Ecol. 357, 7–19 (2008).

    Google Scholar 

  • 79.

    Crisci, C., Bensoussan, N., Romano, J.-C. & Garrabou, J. Temperature anomalies and mortality events in marine communities: insights on factors behind differential mortality impacts in the NW Mediterranean. PLoS ONE 6, e23814–e23814 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 80.

    Galli, G., Solidoro, C. & Lovato, T. Marine heat waves hazard 3D maps and the risk for low motility organisms in a warming Mediterranean Sea. Front. Mar. Sci. 4, 1–14 (2017).

    Google Scholar 

  • 81.

    Gao, K., Zhang, Y. & Häder, D. P. Individual and interactive effects of ocean acidification, global warming, and UV radiation on phytoplankton. J. Appl. Phycol. 30, 743–759 (2018).

    CAS  Google Scholar 

  • 82.

    Brand, L. E. Genetic variability and spatial patterns of genetic differentiation in there productive rates of the marine coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica. Limnol. Oceanogr. 27, 236–245 (1982).

    ADS  Google Scholar 

  • 83.

    Heinle, M. The Effects of Light, Temperature and Nutrients on Coccolithophores and Implications for Biogeochemical Models (University of East Anglia, Norwich, 2013).

    Google Scholar 

  • 84.

    Buitenhuis, E. T., Pangerc, T., Franklin, D. J., Le Quéré, C. & Malin, G. Growth rates of six coccolithophorid strains as a function of temperature. Limnol. Oceanogr. 53, 1181–1185 (2008).

    ADS  Google Scholar 

  • 85.

    Kleijne, A. Holococcolithophorids from the Indian Ocean, Red Sea, Mediterranean Sea and North Atlantic Ocean. Mar. Micropaleontol. 17, 1–76 (1991).

    ADS  Google Scholar 

  • 86.

    Knappertsbusch, M. Geographic distribution of living and Holocene coccolithophores in the Mediterranean Sea. Mar. Micropaleontol. 21, 219–247 (1993).

    ADS  Google Scholar 

  • 87.

    Varkitzi, I. et al. Phytoplankton dynamics and bloom formation in the oligotrophic Eastern Mediterranean: field studies in the Aegean, Levantine and Ionian seas. Deep Sea Res. II 171, 104662 (2019).

    Google Scholar 

  • 88.

    Egge, J. K. & Heimdal, B. R. Blooms of phytoplankton including Emiliania huxleyi (haptophyta). Effects of nutrient supply in different N:P ratios. Sarsia 79, 333–348 (1994).

    Google Scholar 

  • 89.

    Riegman, R., Stolte, W., Noordeloos, A. A. M. & Slezak, D. Nutrient uptake and alkaline phosphatase (EC 3:1:3:1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. J. Phycol. 36, 87–96 (2000).

    CAS  Google Scholar 

  • 90.

    Godrijan, J., Young, J. R., Marić Pfannkuchen, D., Precali, R. & Pfannkuchen, M. Coastal zones as important habitats of coccolithophores: a study of species diversity, succession, and life-cycle phases. Limnol. Oceanogr. 63, 1692–1710 (2018).

    ADS  Google Scholar 

  • 91.

    Cerino, F., Malinverno, E., Fornasaro, D., Kralj, M. & Cabrini, M. Coccolithophore diversity and dynamics at a coastal site in the Gulf of Trieste (northern Adriatic Sea). Estuar. Coast. Shelf Sci. 196, 331–345 (2017).

    ADS  Google Scholar 

  • 92.

    Ausín, B. et al. Spatial and temporal variability in coccolithophore abundance and distribution in the NW Iberian coastal upwelling system. Biogeosciences 15, 245–262 (2018).

    ADS  Google Scholar 

  • 93.

    Kleijne, A. Extant Rhabdosphaeraceae (coccolithophorids, class Prymnesiophyceae) from the Indian Ocean, Red Sea, Mediterranean Sea and North Atlantic Ocean. Scr. Geol. 100, 1–63 (1992).

    Google Scholar 

  • 94.

    Okada, H. & McIntyre, A. Seasonal distribution of modern coccolithophores in the western North Atlantic Ocean. Mar. Biol. 54, 319–328 (1979).

    Google Scholar 

  • 95.

    Dimiza, M. D., Triantaphyllou, M. V. & Dermitzakis, M. D. Seasonality and ecology of living coccolithophores in Eastern Mediterranean coastal environments (Andros Island, Middle Aegean Sea). Micropaleontology 54, 159–175 (2008).

    Google Scholar 

  • 96.

    Gafar, N. A., Eyre, B. D. & Schulz, K. G. Particulate inorganic to organic carbon production as a predictor for coccolithophorid sensitivity to ongoing ocean acidification. Limnol. Oceanogr. Lett. 4, 62–70 (2019).

    CAS  Google Scholar 

  • 97.

    O’Brien, C. J. et al. Global marine plankton functional type biomass distributions: coccolithophores. Earth Syst. Sci. Data 5, 259–276 (2013).

    ADS  Google Scholar 

  • 98.

    Beaufort, L. Weight estimates of coccoliths using the optical properties (birefringence) of calcite. Micropaleontology 51, 289–298 (2005).

    Google Scholar 

  • 99.

    Yang, T. & Wei, K. How many coccoliths are there in a coccosphere of the extant coccolithophorids? A compilation. J. Nannoplankton Res. 25, 7–15 (2003).

    Google Scholar 

  • 100.

    Triantaphyllou, M. V. et al. Coccolithophore community response along a natural CO2 gradient off Methana (SW Saronikos Gulf, Greece, NE Mediterranean). PLoS ONE 13, e0200012 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 101.

    Saruwatari, K., Satoh, M., Harada, N., Suzuki, I. & Shiraiwa, Y. Change in coccolith size and morphology due to response to temperature and salinity in coccolithophore Emiliania huxleyi (Haptophyta) isolated from the Bering and Chukchi seas. Biogeosciences 13, 2743–2755 (2016).

    ADS  Google Scholar 

  • 102.

    Tyrrell, T., Schneider, B., Charalampopoulou, A. & Riebesell, U. Coccolithophores and calcite saturation state in the Baltic and Black Seas. Biogeosciences 5, 485–494 (2008).

    ADS  CAS  Google Scholar 

  • 103.

    Dimiza, M. D. et al. The composition and distribution of living coccolithophores in the Aegean Sea (NE Mediterranean). Micropaleontology 61, 521–540 (2015).

    Google Scholar 

  • 104.

    Rosas-Navarro, A., Langer, G. & Ziveri, P. Temperature affects the morphology and calcification of Emiliania huxleyi strains. Biogeosciences 13, 2913–2926 (2016).

    ADS  Google Scholar 

  • 105.

    Oviedo, A. M., Langer, G. & Ziveri, P. Effect of phosphorus limitation on coccolith morphology and element ratios in Mediterranean strains of the coccolithophore Emiliania huxleyi. J. Exp. Mar. Biol. Ecol. 459, 105–113 (2014).

    CAS  Google Scholar 

  • 106.

    Fielding, S. R., Herrle, J. O., Bollmann, J., Worden, R. H. & Montagnes, D. J. S. Assessing the applicability of Emiliania huxleyi coccolith morphology as a sea-surface salinity proxy. Limnol. Oceanogr. 54, 1475–1480 (2009).

    ADS  Google Scholar 

  • 107.

    Green, J. C., Heimdal, B. R., Paasche, E. & Moate, R. Changes in calcification and the dimensions of coccoliths of Emiliania huxleyi (Haptophyta) grown at reduced salinities. Phycologia 37, 121–131 (1998).

    Google Scholar 

  • 108.

    Paasche, E., Brubak, S., Skattebøl, S., Young, J. R. & Green, J. C. Growth and calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) at low salinities. Phycologia 35, 394–403 (1996).

    Google Scholar 

  • 109.

    Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D. & Kleypas, J. A. Coccolithophore growth and calcification in a changing ocean. Prog. Oceanogr. 159, 276–295 (2017).

    ADS  Google Scholar 

  • 110.

    Langer, G. & Benner, I. Effect of elevated nitrate concentration on calcification in Emiliania huxleyi. J. Nannoplankt. Res. 30, 77–80 (2009).

    Google Scholar 

  • 111.

    Langer, G., Oetjen, K. & Brenneis, T. On culture artefacts in coccolith morphology. Helgol. Mar. Res. 67, 359–369 (2013).

    ADS  Google Scholar 

  • 112.

    Riebesell, U. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407, 364–366 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 113.

    Langer, G., Probert, I., Nehrke, G. & Ziveri, P. The morphological response of Emiliania huxleyi to seawater carbonate chemistry changes: an inter-strain comparison. J. Nannoplankt. Res. 32, 29–34 (2010).

    Google Scholar 

  • 114.

    Watabe, N. & Wilbur, K. M. Effects of temperature on growth, calcification, and coccolith form in Coccolithus huxleyi (Coccolithineae). Limnol. Oceanogr. 11, 567–575 (1966).

    ADS  Google Scholar 

  • 115.

    Gerecht, A. C., Luka, Š, Langer, G. & Henderiks, J. Phosphorus limitation and heat stress decrease calcification in Emiliania huxleyi. Biogeosciences 15, 833–845 (2018).

    ADS  CAS  Google Scholar 

  • 116.

    Honjo, S. Coccoliths: production, transportation and sedimentation. Mar. Micropaleontol. 1, 65–79 (1976).

    ADS  Google Scholar 

  • 117.

    Faucher, G. et al. Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress. Biogeosciences 14, 3603–3613 (2017).

    ADS  CAS  Google Scholar 

  • 118.

    Herfort, L., Loste, E., Meldrum, F. & Thake, B. Structural and physiological effects of calcium and magnesium in Emiliania huxleyi (Lohmann) Hay and Mohler. J. Struct. Biol. 148, 307–314 (2004).

    CAS  PubMed  Google Scholar 

  • 119.

    Leonardos, N., Read, B., Thake, B. & Young, J. R. No mechanistic dependence of photosynthesis on calcification in the coccolithophorid Emiliania huxleyi. J. Phycol. 45, 1046–1051 (2009).

    PubMed  Google Scholar 

  • 120.

    Walker, C. E. et al. The requirement for calcification differs between ecologically important coccolithophore species. New Phytol. 220, 147–162 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 121.

    U.S. EPA. Method development and preliminary applications of Leptospira spirochetes in water samples (U.S. Environmental Protection Agency, 2018).

  • 122.

    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Chang. Biol. 19, 1884–1896 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 123.

    Schulz, K. et al. Phytoplankton blooms at increasing levels of atmospheric carbon dioxide: experimental evidence for negative effects on prymnesiophytes and positive on small picoeukaryotes. Front. Mar. Sci. 4, 1–18 (2017).

    Google Scholar 

  • 124.

    Dickson, A. G., Sabine, C. L. & Christian, J. R. Guide to best practices for ocean CO 2measurements, PICES Special Publication 3. (PICES, 2007).

  • 125.

    Lavigne, H. & Gattuso, J. P. Seacarb: seawater carbonate chemistry with R. R package version 3.0. https://CRAN.R-project.org/package=seacarb (2011).

  • 126.

    Orr, J. C., Epitalon, J., Dickson, A. G. & Gattuso, J.-P. Routine uncertainty propagation for the marine carbon dioxide system. Mar. Chem. 207, 84–107 (2018).

    CAS  Google Scholar 

  • 127.

    Strickland, J. D. & Parsons, T. R. A Practical Handbook of Seawater Analysis (Fisheries Research Board of Canada, Toronto, 1972).

    Google Scholar 

  • 128.

    Rimmelin, P. & Moutin, T. Re-examination of the MAGIC method to dermine low orthophosphate concentraion in seawater. Anal. Chim. Acta 548, 174–182 (2005).

    CAS  Google Scholar 

  • 129.

    Ivančič, I. & Degobbis, D. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res. 18, 1143–1147 (1984).

    Google Scholar 

  • 130.

    Bollmann, J. et al. Techniques for quantitative analyses of calcareous marine phytoplankton. Mar. Micropaleontol. 44, 163–185 (2002).

    ADS  Google Scholar 

  • 131.

    Horigome, M. T. et al. Environmental controls on the Emiliania huxleyi calcite mass. Biogeosciences 11, 2295–2308 (2014).

    ADS  CAS  Google Scholar 

  • 132.

    Dollfus, D. & Beaufort, L. Fat neural network for recognition of position-normalised objects. Neural Netw. 12, 553–560 (1999).

    CAS  PubMed  Google Scholar 

  • 133.

    Beaufort, L. & Dollfus, D. Automatic recognition of coccoliths by dynamical neural networks. Mar. Micropaleontol. 51, 57–73 (2004).

    ADS  Google Scholar 

  • 134.

    RStudio Team. RStudio: integrated development for R. https://www.rstudio.com (2016).


  • Source: Ecology - nature.com

    Preparation and water desalination properties of bridged polysilsesquioxane membranes with divinylbenzene and divinylpyridine units

    Genetic tropicalisation following a marine heatwave