in

Evaluation of PCR conditions for characterizing bacterial communities with full-length 16S rRNA genes using a portable nanopore sequencer

  • 1.

    Turnbaugh, P. et al. The human microbiome project. Nature 449, 804–810 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Sivasubramaniam, D. & Franks, A. Bioengineering microbial communities: their potential to help, hinder and disgust. Bioengineered 7, 137–144 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Dunbar, J. et al. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol. 65, 1662–1669 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Cottrell, M. T. & Kirchman, D. L. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl. Environ. Microbiol. 66, 5116–5122 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Clement, B. G., Kehl, L. E., DeBord, K. L. & Kitts, C. L. Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. J. Microbiol. Methods 31, 135–142 (1998).

    CAS  Google Scholar 

  • 7.

    Brunk, C. F., Avaniss-Aghajani, E. & Brunk, C. A. A computer analysis of primer and probe hybridization potential with bacterial small-subunit rRNA sequences. Appl. Environ. Microbiol. 62, 872–879 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Ferris, M. J., Muyzer, G. & Ward, D. M. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62, 340–346 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Liu, L. et al. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. https://doi.org/10.1155/2012/251364 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10, 5029 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Quail, M. A. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom. 13, 341 (2012).

    CAS  Google Scholar 

  • 13.

    Cai, L. et al. Biased diversity metrics revealed by bacterial 16S pyrotags derived from different primer sets. PLoS ONE 8, e53649 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Guo, F., Ju, F., Cai, L. & Zhang, T. Taxonomic precision of different hypervariable regions of 16S rRNA gene and annotation methods for functional bacterial groups in biological wastewater treatment. PLoS ONE 8, e76185 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Wang, F. et al. Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express 8, 182–182 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 16.

    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).

    CAS  PubMed  Google Scholar 

  • 17.

    Wommack, K. E., Bhavsar, J. & Ravel, J. Metagenomics: read length matters. Appl. Environ. Microbiol. 74, 1453–1463 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Earl, J. P. et al. Species-level bacterial community profiling of the healthy sinonasal microbiome using pacific biosciences sequencing of full-length 16S rRNA genes. Microbiome 6, 190 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Whon, T. W. et al. The effects of sequencing platforms on phylogenetic resolution in 16 S rRNA gene profiling of human feces. Sci. Data 5, 180068 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Schmidt, K. et al. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J. Antimicrob. Chemother. 72, 104–114 (2016).

    PubMed  Google Scholar 

  • 21.

    Pomerantz, A. et al. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. Gigascience. https://doi.org/10.1093/gigascience/giy033 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 22.

    Benítez-Páez, A., Portune, K. J. & Sanz, Y. Species-level resolution of 16S rRNA gene amplicons sequenced through the MinIONTM portable nanopore sequencer. Gigascience https://doi.org/10.1186/s13742-016-0111-z (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Mitsuhashi, S. et al. A portable system for rapid bacterial composition analysis using a nanopore-based sequencer and laptop computer. Sci. Rep. 7, 5657 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Srivathsan, A. et al. Rapid, large-scale species discovery in hyperdiverse taxa using 1D MinION sequencing. BMC Biol. 17, 96 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Smyth, R. P. et al. Reducing chimera formation during PCR amplification to ensure accurate genotyping. Gene 469, 45–51 (2010).

    CAS  PubMed  Google Scholar 

  • 26.

    Gołębiewski, M. & Tretyn, A. Generating amplicon reads for microbial community assessment with next-generation sequencing. J. Appl. Microbiol. 128, 330–354 (2020).

    PubMed  Google Scholar 

  • 27.

    Hongoh, Y., Yuzawa, H., Ohkuma, M. & Kudo, T. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiol. Lett. 221, 299–304 (2003).

    CAS  PubMed  Google Scholar 

  • 28.

    D’Amore, R. et al. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genom. 17, 55 (2016).

    Google Scholar 

  • 29.

    Wu, J. Y. et al. Effects of polymerase, template dilution and cycle number on PCR based 16 S rRNA diversity analysis using the deep sequencing method. BMC Microbiol. 10, 255 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Aird, D. et al. Analyzing and minimizing PCR amplification bias in illumina sequencing libraries. Genome Biol. 12, R18 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint, arXiv:1303.3997 (2013).

  • 34.

    Cole, J. R. et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).

    CAS  PubMed  Google Scholar 

  • 35.

    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Google Scholar 

  • 36.

    Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).

    Google Scholar 

  • 37.

    Nicholls, S. M., Quick, J. C., Tang, S. & Loman, N. J. Ultra-deep, long-read nanopore sequencing of MOCK microbial community standards. Gigascience https://doi.org/10.1093/gigascience/giz043 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    Kai, S. et al. Rapid bacterial identification by direct PCR amplification of 16S rRNA genes using the MinIONTM nanopore sequencer. FEBS Open Bio. 9, 548–557 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Suzuki, M. T. & Giovannoni, S. J. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62, 625–630 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Gohl, D. M. et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 34, 942–949 (2016).

    CAS  PubMed  Google Scholar 

  • 41.

    Penna, V. T., Martins, S. A. & Mazzola, P. G. Identification of bacteria in drinking and purified water during the monitoring of a typical water purification system. BMC Public Health 2, 13 (2002).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Burrows, S. M. et al. Bacteria in the global atmosphere: part 2—modeling of emissions and transport between different ecosystems. Atmos. Chem. Phys. 9, 9281–9297 (2009).

    ADS  CAS  Google Scholar 

  • 43.

    Nakagawa, S. et al. Rapid sequencing-based diagnosis of infectious bacterial species from meningitis patients in Zambia. Clin. Transl. Immunol. 8, e01087 (2019).

    Google Scholar 

  • 44.

    Good, I. J. The population frequencies of species and the estimation of population parameters. Biometrika 40, 237–264 (1953).

    MathSciNet  MATH  Google Scholar 

  • 45.

    Lemos, L. N., Fulthorpe, R. R., Triplett, E. W. & Roesch, L. F. Rethinking microbial diversity analysis in the high throughput sequencing era. J. Microbiol. Methods 86, 42–51 (2011).

    CAS  PubMed  Google Scholar 

  • 46.

    Walker, A. W. et al. 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome 3, 26 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Hu, L. et al. Assessment of Bifidobacterium species using groEL gene on the basis of Illumina MiSeq high-throughput sequencing. Genes 8, 336 (2017).

    PubMed Central  Google Scholar 

  • 48.

    Nygaard, A. B., Tunsjø, H. S., Meisal, R. & Charnock, C. A preliminary study on the potential of nanopore MinION and illumina MiSeq 16S rRNA gene sequencing to characterize building-dust microbiomes. Sci. Rep. 10, 3209 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Ichijo, T. et al. Distribution and respiratory activity of mycobacteria in household water system of healthy volunteers in Japan. PLoS ONE 9, e110554 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Arai, S. et al. Assessment of pig saliva as a Streptococcus suis reservoir and potential source of infection on farms by use of a novel quantitative polymerase chain reaction assay. Am. J. Vet. Res. 79, 941–948 (2018).

    CAS  PubMed  Google Scholar 

  • 51.

    Lu, Q., Hu, H., Mo, J. & Shu, L. Enhanced amplification of bacterial and fungal DNA using a new type of DNA polymerase. Aust. Plant Pathol. 41, 661–663 (2012).

    CAS  Google Scholar 

  • 52.

    Andrews, S. FastQC: a quality control tool for high throughput sequence data. Available online at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc.

  • 53.

    Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Jain, M. et al. Improved data analysis for the MinION nanopore sequencer. Nat. Methods 12, 351–356 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org (2018).


  • Source: Ecology - nature.com

    Preparation and water desalination properties of bridged polysilsesquioxane membranes with divinylbenzene and divinylpyridine units

    Genetic tropicalisation following a marine heatwave