in

Insights into a 429-million-year-old compound eye

  • 1.

    Barrande, J. Système Silurien du Centre de la Bohème, p. 253. (Prague, Paris, 1852–1881).

  • 2.

    Hughes, N. C., Kříž, J., Macquaker, J. H. S. & Huff, W. D. The depositional environment and taphonomy of the Homerian Aulacopleura shales fossil assemblage near Loděnice, Czech Republic (Prague Basin, Perunican microcontinent). Bull. Geosci. 89, 219–238 (2014).

    Google Scholar 

  • 3.

    Hughes, N. C., Hong, P. S., Hou, J. B. & Fusco, G. The development of the Silurian trilobite Aulacopleura koninckii reconstructed by applying Inferred growth and segmentation dynamics: A case study in Paleo-Evo-Devo. Front. Ecol. Evol. 5, 1–12 (2017).

    Google Scholar 

  • 4.

    Moore, R. C., ed. Treatise on Invertebrate Paleontology [Part O—Arthropoda 1 (Trilobitomorpha)]. (Geol. Soc. America and Univ. Kansas Press, 1959).

  • 5.

    Fortey, R. A. & Owens, R. M. Evolutionary trends in invertebrates. Chapter 5. Trilobites. In Evolutionary Trends (ed. K. J. McNamara) 121–142 (Belhaven Press, London, 1990).

  • 6.

    Fusco, G., Hughes, N. C., Webster, M. & Minelli, A. Exploring developmental modes in a fossil arthropod: Growth and trunk segmentation of the trilobite Aulacopleura koninckii. Am. Nat. 163, 167–183 (2003).

    PubMed  Google Scholar 

  • 7.

    Fusco, G., Hong, P. S. & Hughes, N. C. Axial growth gradients across the postprotaspid ontogeny of the Silurian trilobite Aulacopleura koninckii. Paleobiology 42, 426–438 (2016).

    Google Scholar 

  • 8.

    Seilacher, A. Begriff und Bedeutung der Fossil-Lagerstätten. [Concept and significance of fossil-Lagerstätten]. Neues Jahrbuch für Geologie und Paläontologie (1970).

  • 9.

    Seilacher, A., Reif, W.-E. & Westphal, F. Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philos. Trans. R. Soc. Lond. B Biol. Sci. 311, 5–23 (1985).

  • 10.

    Cong, P.-Y., Ma, X.-Y., Hou, X.-G., Edgecombe, G. D. & Strausfeld, N. J. Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature 513, 538–542 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    Ma, X.-Y., Hou, X.-G., Edgecombe, G. D. & Strausfeld, N. J. Complex brain and optic lobes in an early Cambrian arthropod. Nature 490, 258–261 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 12.

    Tanaka, G. et al. Mineralized rods and conessuggest colour vision in a 300 Myr-old fossil fish. Nat. Commun. 5, 5920 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 13.

    Ma, X.-Y., Edgecombe, G. D., Hou, X.-G., Goral, T. & Strausfeld, N. J. Preservational pathways of corresponding brains of a Cambrian euarthropod. Curr. Biol. 25, 2969–2975 (2015).

    CAS  PubMed  Google Scholar 

  • 14.

    Strausfeld, N. F., Ma, X.-Y. & Edgecombe, G. D. Fossils and the evolution of arthropod brains. Curr. Biol. 26, R989-1000 (2016).

    CAS  PubMed  Google Scholar 

  • 15.

    Tanaka, G., Parker, A. R., Siveter, D. J., Maeda, H. & Furutani, M. An exceptionally well-preserved Eocene dolichopodid fly eye: Function and evolutionary significance. Proc. R. Soc. B 276, 1015–1019 (2009).

    PubMed  Google Scholar 

  • 16.

    Schoenemann, B. & Clarkson, E. N. Discovery of some 400 million year-old sensory structures in the compound eyes of trilobites. Sci. Rep. 3, 1429 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Vannier, J., Schoenemann, B., Gillot, T., Charbonnier, S., & Clarkson, E.N.K. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic. Nat. Comm. 7, 1–9 (2016).

  • 18.

    Schoenemann, B., Pärnaste, H. & Clarkson, E. N. K. Structure and function of a compound eye, more than half a billion years old. PNAS 114, 13489–13494 (2017).

    CAS  PubMed  Google Scholar 

  • 19.

    Schoenemann, B., Poschmann, M. & Clarkson, E. N. K. Insights into the 400 million-year-old eyes of giant sea scorpions (Eurypterida) suggest the structure of Palaeozoic compound eyes. Sci. Rep. 9, 1–10 (2019).

    ADS  CAS  Google Scholar 

  • 20.

    Bergström, J. Classification of olenellid trilobites and some Balto-Scandian species. Nor. Geol. Tidsskr. 53, 283–314 (1973).

    Google Scholar 

  • 21.

    Nilsson, D. E. Optics and evolution of the compound eye. In Facets of Vision (eds. S. G. Stavenga & R. C. Hardie) 30–73 (Springer, Berlin, 1989).

  • 22.

    Nilsson, D. E. Eye evolution and its functional basis. Vis. Neurosci. 30, 5–20 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Strausfeld, N. J. et al. Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems. Arthropod Struct. Dev. 45, 152–172 (2016).

    PubMed  Google Scholar 

  • 24.

    Nilsson, D. E. Evolutionary links between apposition and superposition optics in crustacean eyes. Nature 302(5911), 818–821 (1983).

    ADS  Google Scholar 

  • 25.

    Nilsson, D. E., Hallberg, E. & Elofsson, R. The ontogenetic development of refracting superposition eyes in crustaceans: Transformation of optical design. Tissue Cell 18, 509–519 (1986).

    CAS  PubMed  Google Scholar 

  • 26.

    Cronin, T. W., Johnsen, S., Marshall, N. J. & Warrant, E. J. Visual Ecology. (Princeton University Press, Princeton, 2014), pp. 405.

  • 27.

    Müller J. Zur vergleichenden Physiologie des Gesichtssinnes des Menschen und der Thiere. [Contributions to the comparative physiology of the sense of sight of humans and animals]. (Cnobloch, Leipzig, 1826).

  • 28.

    Exner, S. Die Physiologie der facettirten Augen von Krebsen und Insecten: eine Studie. [Physiology of the facetted eyes of crustaceans and insects]. (Franz Deuticke, Berlin, 1891), pp. 232.

  • 29.

    Gaten, E. Optics and phylogeny: Is there an insight? The evolution of superposition. Contrib. Zool. 67, 223–235 (1998).

    Google Scholar 

  • 30.

    Towe, K. M. Trilobite eyes: Calcified lenses in vivo. Science 179, 1007–1009 (1973).

    ADS  CAS  PubMed  Google Scholar 

  • 31.

    Lee, M. R., Torney, C. & Owen, A. W. Magnesium-rich intralensar structures in schizochroal trilobite eyes. Palaeontology 50, 1031–1037 (2007).

    Google Scholar 

  • 32.

    Lee, M. R., Torney, C. & Owen, A. W. Biomineralisation in the Palaeozoic oceans: evidence for simultaneous crystallisation of high and low magnesium calcite by phacopine trilobites. Chem. Geol. 314, 33–44 (2012).

    ADS  Google Scholar 

  • 33.

    Torney, C., Lee, M. R. & Owen, A. W. An electron backscatter diffraction study of Geesops: a broader view of trilobite vision? Adv. Trilobite Res. 389 (2008).

  • 34.

    Torney, C., Lee, M. R. & Owen, A. W. Microstructure and growth of the lenses of schizochroal trilobite eyes. Palaeontology 57, 783–799 (2914).

  • 35.

    Clarkson, E. N. & Levi-Setti, R. Trilobite eyes and the optics of Des Cartes and Huygens. Nature 254, 663 (1975).

    ADS  CAS  PubMed  Google Scholar 

  • 36.

    Clarkson, E. N. K., Horváth, G. & Levi-Setti, R. The eyes of trilobites; the oldest preserved visual system. Arthropod Struct. Dev. 35, 247–259 (2006).

    PubMed  Google Scholar 

  • 37.

    Legg, D. A., Sutton, M. D. & Edgecombe, G. D. Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nat. Commun. 4, 2485 (2013).

    ADS  PubMed  Google Scholar 

  • 38.

    Boudreaux, H. B. Arthropod Phylogeny, with Special Reference to Insects. (Wiley, New York, 1979).

  • 39.

    Scholtz, G. & Edgecombe, G. D. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev. Genes Evol. 216, 395–415 (2006).

    PubMed  Google Scholar 

  • 40.

    Scholtz, G., Staude, A., & Dunlop, J. A. (2019). Trilobite compound eyes with crystalline cones and rhabdoms show mandibulate affinities. Nat. Commun. 10, 2503 (2019).

  • 41.

    Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L. & Hendler, G. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412, 819 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • 42.

    Speiser, D. I., Eernisse, D. J., & Johnsen, S. A chiton uses aragonite lenses to form images. Curr. Biol. 21, 665–670 (2911).

  • 43.

    Li, L. et al. Multifunctionality of chiton biomineralized armor with an integrated visual system. Science 350, 952–956 (2015).

    CAS  PubMed  Google Scholar 

  • 44.

    Lindgren, J. et al. Fossil insect eyes shed light on trilobite optics and the arthropod pigment screen. Nature 573, 122–125 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 45.

    Snyder, A. W. The acuity of compound eyes: Physical limitations and design. J. Comp. Physiol. A 116, 161–182 (1977).

    Google Scholar 

  • 46.

    Snyder, A. W. Physics of vision in compound eyes. In Comparative physiology and evolution of vision in invertebrates (ed. H. J. Autrum) 225–313 (Springer, Berlin, 1979).

  • 47.

    Nilsson, D. E. & Odselius, R. A new mechanism for light-dark adaptation in the Artemia compound eye (Anostraca, Crustacea). J. Comp. Physiol. A 143, 389–399 (1981).

    Google Scholar 

  • 48.

    Young, S. & Downing, A. C. The receptive fields of Daphnia ommatidia. J. Exp. Biol. 64, 185–202 (1976).

    CAS  PubMed  Google Scholar 

  • 49.

    Sandeman, D. C. Regionalization in the eye of the crab Leptograpsus variegatus: Eye movements evoked by a target moving in different parts of the visual field. J. comp. Physiol. 123, 299–306 (1978).

    Google Scholar 

  • 50.

    Zeil, J. & Hemmi, J. M. The visual ecology of fiddler crabs. J. Comp. Physiol. A 192, 1–25 (2006).

    ADS  Google Scholar 

  • 51.

    Doughtie, D. G. & Rao, K. R. Ultrastructure of the eyes of the grass shrimp, Palaemonetes pugio. Cell Tissue Res. 238, 271–288 (1984).

    Google Scholar 

  • 52.

    Welsh, B. L. The role of grass shrimp, Palaemonetes pugio, in a tidal marsh ecosystem. Ecology 56, 513–530 (1975).

    Google Scholar 

  • 53.

    Ball, E. E., Kao, L. C., Stone, R. C. & Land, M. F. Eye structure and optics in the pelagic shrimp Acetes sibogae (Decapoda, Natantia, Sergestidae) in relation to light-dark adaptation and natural history. Philos. Trans. R. Soc. Lond. B Biol. Sci. 313, 251–270 (1986).

  • 54.

    Hanamura, Y. Occurrence of Acetes sibogae Hansen (Crustacea: Decapoda: Sergestidae) in Western Australia, with notes on the northern Australian population. Rec. West Aus. Mus. 19, 465–468 (1999).

    Google Scholar 

  • 55.

    Schaffmeister, B. E., Hiddink, J. G. & Wolff, W. J. Habitat use of shrimps in the intertidal and shallow subtidal seagrass beds of the tropical Banc d’Arguin, Mauritania. J. Sea Res. 55, 230–243 (2006).

    ADS  Google Scholar 

  • 56.

    Vogt, K. Ray path and reflection mechanisms in crayfish eyes. Z. Naturforsch. C 32, 466–468 (1977).

    Google Scholar 

  • 57.

    Vogt, K. Die Spiegeloptik des Flusskrebsauges. [Mirror optics of crayfish]. J. Comp. Physiol. 135, 1–19 (1980).

  • 58.

    Land, M. E. Crustacea, in Photoreception and vision in invertebrates (ed. Ali, M. A.), 401–438, (Plenum, London, 1984).

  • 59.

    Meyer-Rochow, V. B. The crustacean eye: Dark/light adaptation, polarization sensitivity, flicker fusion frequency, and photoreceptor damage. Zool. Sci. 18, 1175–1198 (2001).

    CAS  PubMed  Google Scholar 

  • 60.

    Land, M. F. The eyes of hyperiid amphipods: Relations of optical structure to depth. J. Comp. Physiol. A. 164, 751–762 (1989).

    Google Scholar 

  • 61.

    Nilsson, D. E. & Nilsson, H. L. A crustacean compound eye adapted for low light intensities (Isopoda). J. Comp. Physiol. 143, 503–510 (1981).

    Google Scholar 

  • 62.

    Fahrenbach, W. H. The morphology of the eyes of Limulus II. Ommatidia of the compound eye. Z. Zellforsch. 93, 451–483 (1969).

  • 63.

    Paulus H. F. The compound eyes of apterygote insects. In The Compound Eye and Vision of Insects. (ed. G. A. Horridge) 3–20 (Clarendon Press, Oxford, 1975).

  • 64.

    Horridge, G. A. & Barnard, P. B. T. Movement of palisade in locust retinula cells when illuminated. J. Cell Sci. 3, 131–136 (1965).

    Google Scholar 

  • 65.

    Snyder A.W. Optical properties of invertebrate physiology. In The Compound Eye and Vision of Insects. (ed. G. A. Horridge) 154–179 (Clarendon Press, Oxford, 1975).

  • 66.

    Lindgren, J. et al. Molecular preservation of the pigment melanin in fossil melanosomes. Nat. Commun. 3, 824 (2012).

    ADS  PubMed  Google Scholar 

  • 67.

    Vinther, J., Briggs, D. E. G., Prum, R. O. & Saranathan, V. The colour of fossil feathers. Biol. Lett. 4, 522–525 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 68.

    Li, Q. et al. Plumage color patterns of an extinct dinosaur. Science 327, 1369–1372 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 69.

    Vinther, J. A guide to the field of palaeo colour: Melanin and other pigments can fossilize: Reconstructing colour patterns from ancient organisms can give new insights to ecology and behavior. BioEssays 37, 643–656 (2015).

    PubMed  Google Scholar 

  • 70.

    Lindgren, J. et al. Interpreting melanin-based coloration through deep time: A critical review. Proc. R. Soc. B. 282(1813), 20150614 (2015).

    PubMed  Google Scholar 

  • 71.

    Kirschfeld, K. The visual system of Musca: Studies on optics, structure and function. In Information Processing in the Visual Systems of Anthropods (ed. Wehner R.) 61–74 (Springer, Berlin, 1972).

  • 72.

    Kirschfeld, K. & Franceschini, N. Optische Eigenschaften der Ommatidien im Komplexauge von Musca. [Optical properties of the ommatidia in the compound eyes of Musca]. Kybernetik 5, 47–52 (1968).

  • 73.

    Stavenga, D. G. The neural superposition eye and its optical demands. J. Comp. Physiol. 102, 297–304 (1975).

    Google Scholar 

  • 74.

    McIntyre, P. & Caveney, S. Graded-index optics are matched to optical geometry in the superposition eyes of scarab beetles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 311, 237–269 (1985).

  • 75.

    Nilsson, D. E. & Ro, A. I. Did neural pooling for night vision lead to the evolution of neural superposition eyes?. J. Comp. Physiol. A 175, 289–302 (1994).

    Google Scholar 

  • 76.

    van Straelen, V. Description de crustaceés décapodes macroures nouveaux des terrains secondaires. Ann. Soc. roy. Zool. Belg. 53, 84–93 (1923).

    Google Scholar 

  • 77.

    Land, M. F. & Nilsson, D.-E. Animal Eyes. (Oxford University Press, Oxford, 2012).

  • 78.

    Menzi, U. Visual adaptation in nocturnal and diurnal ants. J. Comp. Physiol. A 160, 11–21 (1987).

    Google Scholar 

  • 79.

    Greiner, B. Visual adaptations in the night active wasp Apoica pallens. J. Comp. Neurol. 495, 255–262 (2006).

    PubMed  Google Scholar 

  • 80.

    Greiner, B., Ribi, W. A. & Warrant, E. J. Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell Tissue Res. 316, 377–390 (2004).

    PubMed  Google Scholar 

  • 81.

    Meyer-Rochow, V. B. & Walsh, S. The eyes of mesopelagic crustaceans: I. Gennadas sp. (Penaeidae). Cell Tissue Res. 184, 87–101 (1977).

  • 82.

    Meyer-Rochow, V. B. The eyes of mesopelagic crustaceans. Cell Tissue Res. 186, 337–349 (1978).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Assessing the value of battery energy storage in future power grids

    Spatial patterns of microbial communities across surface waters of the Great Barrier Reef