in

Comparing methods for estimating leaf area index by multi-angular remote sensing in winter wheat

  • 1.

    Delegido, J. et al. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 46, 42–52 (2013).

    Google Scholar 

  • 2.

    Liang, L. et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 165, 123–134 (2015).

    ADS  Google Scholar 

  • 3.

    Meng, Q. Y. et al. Hot dark spot index method based on multi-angular remote sensing for leaf area index retrieval. Environ Earth Sci. 75, 732. https://doi.org/10.1007/s12665-016-5549-x (2016).

    Article  Google Scholar 

  • 4.

    Zhu, Y. H. et al. Exploring the potential of WorldView-2 red-edge band-based vegetation indices for estimation of mangrove leaf area index with machine learning algorithms. Remote Sens. 9, 1060. https://doi.org/10.3390/rs9101060 (2017).

    ADS  Article  Google Scholar 

  • 5.

    Guyot, G., Baret, F. & Jacquemoud, S. Imaging spectroscopy for vegetation studies. In Imaging Spectroscopy: Fundamentals and Prospective Applications (eds Toselli, F. & Bodechtel, J.) 145–165 (Kluwer Academic Publications, Dordrecht, 1992).

    Google Scholar 

  • 6.

    Mutanga, O., Adam, E. & Cho, M. A. High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geo. Inf. 18, 399–406 (2012).

    ADS  Google Scholar 

  • 7.

    Broge, N. H. & Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 76, 156–172 (2001).

    ADS  Google Scholar 

  • 8.

    Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J. & Strachan, I. B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90, 337–352 (2004).

    ADS  Google Scholar 

  • 9.

    LeMaire, G. et al. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 112, 3846–3864 (2008).

    ADS  Google Scholar 

  • 10.

    Yang, X. H. et al. Comparison between radial basis function neural network and regression model for estimation of rice biophysical parameters using remote sensing. Pedosphere 19, 176–188 (2009).

    Google Scholar 

  • 11.

    Noh, H., Zhang, Q., Han, S. & Feng, L. A Neural network model of maize crop nitrogen stress assessment for multi-spectral imaging sensor. Biosyst. Eng. 94, 477–485 (2006).

    Google Scholar 

  • 12.

    Liu, M. L., Liu, X. N., Li, M., Fang, M. H. & Chi, W. X. Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices. Biosyst. Eng. 106, 223–233 (2010).

    Google Scholar 

  • 13.

    Ye, X., Sakai, K., Garciano, L. Q., Asada, S.-I. & Sasao, A. Estimation of citrus yield from airborne hyperspectral images using a neural network model. Ecol. Model. 198, 426–432 (2006).

    Google Scholar 

  • 14.

    Walthall, C. et al. A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery. Remote Sens. Environ. 92, 465–474 (2004).

    ADS  Google Scholar 

  • 15.

    Huang, Z., Turner, B. J., Dury, S. J., Wallis, I. R. & Foley, W. J. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens. Environ. 93, 18–29 (2004).

    ADS  Google Scholar 

  • 16.

    Hansen, P. M. & Schjoerring, J. K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 86, 542–553 (2003).

    ADS  Google Scholar 

  • 17.

    Darvishzadeh, R. et al. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J. Photogramm. Remote Sens. 63, 409–426 (2008).

    ADS  Google Scholar 

  • 18.

    Nguyen, H. T. & Lee, B. W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. Eur. J. Agron. 24, 349–356 (2006).

    Google Scholar 

  • 19.

    Jin, X. L. et al. Estimation of leaf water content in winter wheat using grey relational analysis-partial least squares modeling with hyperspectral data. Agron. J. 105, 1385–1392 (2013).

    Google Scholar 

  • 20.

    Atzberger, C., Guérif, M., Baret, F. & Werner, W. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput. Electro. Agric. 73, 165–173 (2010).

    Google Scholar 

  • 21.

    Mirzaie, M. et al. Comparative analysis of different uni- and multi-variate methods for estimation of vegetation water content using hyper-spectral measurements. Int. J. Appl. Earth Obs. Geo. Inf. 26, 1–11 (2014).

    ADS  Google Scholar 

  • 22.

    Durbha, S. S., King, R. L. & Younan, N. H. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sens. Environ. 107, 348–361 (2007).

    ADS  Google Scholar 

  • 23.

    Yang, G. J., Zhao, C. J., Xing, Z. R., Huang, W. J. & Wang, J. H. LAI inversion of spring wheat based on PROBA/CHRIS hyperspectral multi-angular data and PROSAIL model. Trans CSAE. 27, 88–94 (2011) (In Chinese with English abstract).

    CAS  Google Scholar 

  • 24.

    Chen, J. M., Menges, C. H. & Leblanc, S. G. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens. Environ. 97, 447–457 (2005).

    ADS  Google Scholar 

  • 25.

    Wang, Q. et al. The potential of forest biomass inversion based on vegetation indices using multi-angel CHRIS-PROBA data. Remote Sens. 8, 891. https://doi.org/10.3390/rs8110891 (2016).

    ADS  Article  Google Scholar 

  • 26.

    Rougean, J. L. & Breon, F. M. Estimating PAR absorbed by vegetation from bidrectional reflectance measurements. Remote Sens. Environ. 51, 375–384 (1995).

    ADS  Google Scholar 

  • 27.

    Gemmell, F. & McDonald, A. J. View zenith angle effects on the forest information content of three spectral indices. Remote Sens. Environ. 72, 139–158 (2000).

    ADS  Google Scholar 

  • 28.

    Pocewicz, A., Vierling, L. A., Lentile, L. B. & Smith, R. View angle effects on relationships between MISR vegetation indices and leaf index in a recently burned ponderosa pine forest. Remote Sens. Environ. 107, 322–333 (2007).

    ADS  Google Scholar 

  • 29.

    Stagakis, S., Markos, N., Sykioti, O. & Kyparissis, A. Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multi-angular CHRIS/PROBA observations. Remote Sens. Environ. 114, 977–994 (2010).

    ADS  Google Scholar 

  • 30.

    Hasegawa, K., Matsuyama, H., Tsuzuki, H. & Sweda, T. Improving the estimation of leaf area index by using remotely sensed NDVI with BRDF signatures. Remote Sens. Environ. 114, 514–519 (2010).

    ADS  Google Scholar 

  • 31.

    Wu, C., Han, X., Niu, Z. & Dong, J. An evaluation of EO-1 hyperspectral Hyperion data for chlorophyll content and leaf area index estimation. Int. J. Remote Sens. 31, 1079–1086 (2010).

    ADS  Google Scholar 

  • 32.

    Herrmann, I. et al. LAI assessment of wheat and potato crops by VENS and Sentinel-2 bands. Remote Sens. Environ. 115, 2141–2151 (2011).

    ADS  Google Scholar 

  • 33.

    Peñuelas, J. & Filella, I. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sens. 16, 2727–2733 (1995).

    ADS  Google Scholar 

  • 34.

    Vogelmann, J. E., Rock, B. N. & Moss, D. M. Red-edge spectral measurements from Sugar Maple leaves. Int. J. Remote Sens. 14, 1563–1575 (1993).

    ADS  Google Scholar 

  • 35.

    He, L. et al. Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. Eur. J. Agron. 73, 170–185 (2016).

    CAS  Google Scholar 

  • 36.

    Shen, W. Y. et al. Inversion model for severity of powdery mildew in wheat leaves based on factor analysis-BP neural network. Trans CSAE. 31, 183–190 (2015) (in Chinese with English abstract).

    Google Scholar 

  • 37.

    Asner, G. P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 64, 234–253 (1998).

    ADS  Google Scholar 

  • 38.

    Verrelst, J., Schaepman, M. E., Koetz, B. & Kneubühler, M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens. Environ. 11, 2341–2353 (2008).

    ADS  Google Scholar 

  • 39.

    He, L. et al. Improved remote sensing of leaf nitrogen concentration in winter wheat using multi-angular hyperspectral data. Remote Sens. Environ. 174, 122–133 (2016).

    ADS  Google Scholar 

  • 40.

    Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., Harlan, J. C. Monitoring the vernal advancements and retrogradation of natural vegetation. In: NASA/GSFC, Final Report, Greenbelt, MD, USA (pp. 1–137) (1974).

  • 41.

    Jordan, C. F. Derivation of leaf area index from quality of light on the forest floor. Ecology 50, 663–666 (1969).

    Google Scholar 

  • 42.

    Rondeaux, G., Steven, M. & Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 55, 95–107 (1996).

    ADS  Google Scholar 

  • 43.

    Gamon, J. A., Penuelas, J. & Field, C. B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 41, 35–44 (1992).

    ADS  Google Scholar 

  • 44.

    Peng, Y. & Gitelson, A. A. Application of chlorophyll-related vegetation indices for remote estimation of maize productivity. Agric. Forest Meteorol. 151, 1267–1276 (2011).

    ADS  Google Scholar 

  • 45.

    Gitelson, A. A., Gritz, Y. & Merzlyak, M. N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 160, 271–282 (2003).

    CAS  PubMed  Google Scholar 

  • 46.

    Sims, D. A. & Gamon, J. A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81, 331–354 (2002).

    ADS  Google Scholar 

  • 47.

    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).

    ADS  Google Scholar 

  • 48.

    Dash, J. & Curran, P. J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 25, 5403–5413 (2004).

    ADS  Google Scholar 

  • 49.

    Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J. & Dextraze, L. Integrated narrowband vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 81, 416–426 (2002).

    ADS  Google Scholar 

  • 50.

    Qi, J., Chehbouni, A., Huete, A. R., Keer, Y. H. & Sorooshian, S. A modified soil vegetation adjusted index. Remote Sens. Environ. 48, 119–126 (1994).

    ADS  Google Scholar 

  • 51.

    Guyot, G., Baret, F. & Major, D. J. High spectral resolution: determination of spectral shifts between the red and the near infrared. Int. Arch. Photogramm. Remote Sens. 11, 750–760 (1988).

    Google Scholar 

  • 52.

    LeMaire, G., François, C. & Dufrêne, E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens. Environ. 89, 1–28 (2004).

    ADS  Google Scholar 

  • 53.

    Wang, X. L. & Li, Z. B. Identifying the parameters of the Kernel Function in Support Vector Machines based on the Grid-Search method. Periodical of Ocean University of China 35, 859–862 (2005) (in Chinese with English abstract).

    MathSciNet  Google Scholar 

  • 54.

    Feng, C. X., Yu, Z. G., King, U., Baig, M. P. Threefold vs. Fivefold cross validation in one-hidden-layer and two-hidden-layer predictive neural network modeling of machining surface roughness data. J. Manuf. Syst. 24, 93–107 (2005).


  • Source: Ecology - nature.com

    Climate-driven changes in the composition of New World plant communities

    Mobility Systems Center awards four projects for low-carbon transportation research