in

Temperature increase altered Daphnia community structure in artificially heated lakes: a potential scenario for a warmer future

  • 1.

    IPCC. Summary for policymakers 1–32 (Cambridge, United Kingdom and New York, NY, USA, 2014).

  • 2.

    Carey, C. C., Ibelings, B. W., Hoffmann, E. P., Hamilton, D. P. & Brookes, J. D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 46, 1394–1407 (2012).

    CAS  PubMed  Google Scholar 

  • 3.

    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. USA 106, 12788–12793 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl. Acad. Sci. USA 109, 19310–19314 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).

    PubMed  Google Scholar 

  • 6.

    De Senerpont Domis, L. N., Bartosiewicz, M., Davis, C. & Cerbin, S. The effect of small doses of toxic cyanobacterial food on the temperature response of Daphnia galeata: is bigger better? Freshw. Biol. 58, 560–572 (2013).

  • 7.

    Magnuson, J. J. et al. Historical trends in lake and river ice cover in the northen hemisphere. Science 289, 1743–1746 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 8.

    Schoebel, C. N., Tellenbach, C., Spaak, P. & Wolinska, J. Temperature effects on parasite prevalence in a natural hybrid complex. Biol. Lett. 7, 108–111 (2011).

    PubMed  Google Scholar 

  • 9.

    Winder, M. & Schindler, D. E. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85, 2100–2106 (2004).

    Google Scholar 

  • 10.

    Verschoor, A. M., Van Dijk, M. A., Huisman, J. & Van Donk, E. Elevated CO2 concentrations affect the elemental stoichiometry and species composition of an experimental phytoplankton community. Freshw. Biol. 58, 597–611 (2013).

    CAS  Google Scholar 

  • 11.

    Zander, A., Bersier, L.-F. & Gray, S. M. Effects of temperature variability on community structure in a natural microbial food web. Glob. Change Biol. 23, 56–67 (2017).

    ADS  Google Scholar 

  • 12.

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 14.

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).

    PubMed  Google Scholar 

  • 16.

    Meester, L. D., Stoks, R. & Brans, K. I. Genetic adaptation as a biological buffer against climate change: potential and limitations. Integr. Zool. 13, 372–391 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Scranton, K. & Amarasekare, P. Predicting phenological shifts in a changing climate. Proc. Natl. Acad. Sci. USA 114, 13212–13217 (2017).

    CAS  PubMed  Google Scholar 

  • 18.

    Hulme, P. E. Climate change and biological invasions: evidence, expectations, and response options. Biol. Rev. 92, 1297–1313 (2017).

    PubMed  Google Scholar 

  • 19.

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Google Scholar 

  • 20.

    Van Doorslaer, W. et al. Local adaptation to higher temperatures reduces immigration success of genotypes from a warmer region in the water flea Daphnia. Glob. Change Biol. 15, 3046–3055 (2009).

    ADS  Google Scholar 

  • 21.

    Bellard, C. et al. Will climate change promote future invasions?. Glob. Change Biol. 19, 3740–3748 (2013).

    ADS  Google Scholar 

  • 22.

    Holzapfel, A. M. & Vinebrooke, R. D. Environmental warming increases invasion potential of alpine lake communities by imported species. Glob. Change Biol. 11, 2009–2015 (2005).

    Google Scholar 

  • 23.

    Burns, C. W. Predictors of invasion success by Daphnia species: influence of food, temperature and species identity. Biol. Invas. 15, 859–869 (2013).

    Google Scholar 

  • 24.

    Spaak, P., Fox, J. & Hairston, N. G. Jr. Modes and mechanisms of a Daphnia invasion. Proc. Biol. Sci. 279, 2936–2944 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 25.

    Wejnerowski, Ł., Sikora-Koperska, A. & Dawidowicz, P. Temperature elevation reduces the sensitivity of invasive cladoceran Daphnia lumholtzi to filamentous cyanobacterium Raphidiopsis raciborskii. Freshw Biol 935–946, https://doi.org/10.1111/fwb.13480 (2020).

  • 26.

    Wittmann, M. J., Gabriel, W., Harz, E.-M., Laforsch, C. & Jeschke, J. Can Daphnia lumholtzi invade European lakes?. NeoBiota 16, 39–57 (2013).

    Google Scholar 

  • 27.

    Keller, B., Wolinska, J., Manca, M. & Spaak, P. Spatial, environmental and anthropogenic effects on the taxon composition of hybridizing Daphnia. Philos. Trans. R. Soc. Lond, B Biol. Sci. 363, 2943–2952 (2008).

    Google Scholar 

  • 28.

    Petrusek, A. et al. A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda). Zool Scr. 37, 507–519 (2008).

    Google Scholar 

  • 29.

    Zeis, B., Horn, W., Gigengack, U., Koch, M. & Paul, R. J. A major shift in Daphnia genetic structure after the first ice-free winter in a German reservoir. Freshw. Biol. 55, 2296–2304 (2010).

    Google Scholar 

  • 30.

    Van Doorslaer, W., Stoks, R., Duvivier, C., Bednarska, A. & De Meester, L. Population dynamics determine genetic adaptation to temperature in Daphnia. Evolution 63, 1867–1878 (2009).

    PubMed  Google Scholar 

  • 31.

    Woszczyk, M. et al. Stable C and N isotope record of short term changes in water level in lakes of different morphometry: Lake Anastazewo and Lake Skulskie, central Poland. Org. Geochem. 76, 278–287 (2014).

    CAS  Google Scholar 

  • 32.

    Bernatowicz, P., Radzikowski, J., Paterczyk, B., Bebas, P. & Slusarczyk, M. Internal structure of Daphnia ephippium as an adaptation to dispersion. Zool Anz. 277, 12–22 (2018).

    Google Scholar 

  • 33.

    Moss, B. et al. Climate change and the future of freshwater biodiversity in Europe: a primer for policy-makers. Freshw. Rev. 2, 103–130 (2009).

    Google Scholar 

  • 34.

    Ma, X., Hu, W., Smilauer, P., Yin, M. & Wolinska, J. Daphnia galeata and D. dentifera are geographically and ecologically separated whereas their hybrids occur in intermediate habitats: A survey of 44 Chinese lakes. Mol. Ecol. 28, 785–802 (2019).

  • 35.

    Dzialowski, A. R., Lennon, J. T. & Smith, V. H. Food web structure provides biotic resistance against plankton invasion attempts. Biol. Invas. 9, 257–267 (2007).

    Google Scholar 

  • 36.

    Birks, H. H., Whiteside, M. C., Stark, D. M. & Bright, R. C. Recent paleolimnology of three lakes in Northwestern Minnesota. Quat. Res. 6, 249–272 (1976).

    Google Scholar 

  • 37.

    Tsugeki, N. K., Ishida, S. & Urabe, J. Sedimentary records of reduction in resting egg production of Daphnia galeata in Lake Biwa during the 20th century: a possible effect of winter warming. J. Paleolimnol. 42, 155–165 (2009).

    ADS  Google Scholar 

  • 38.

    Keller, B., Wolinska, J., Tellenbach, C. & Spaak, P. Reproductive isolation keeps hybridizing Daphnia species distinct. Limnol. Oceanogr. 52, 984–991 (2007).

    ADS  Google Scholar 

  • 39.

    Spaak, P. & Boersma, M. Predator mediated coexistence of hybrid and parental Daphnia taxa. Arch. Für Hydrobiol. 167, 55–76 (2006).

    Google Scholar 

  • 40.

    Kozłowski, J., Czarnołęski, M. & Dańko, M. Can optimal resource allocation models explain why ectotherms grow larger in cold?. Integr. Comput. Biol. 44, 480–493 (2004).

    Google Scholar 

  • 41.

    Angilletta, M. J. Jr., Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr. Comput. Biol. 44, 498–509 (2004).

    Google Scholar 

  • 42.

    Brooks, J. L. & Dodson, S. I. Predation, body size, and composition of plankton. Science 150, 28–35 (1965).

    ADS  CAS  PubMed  Google Scholar 

  • 43.

    Gliwicz, Z. M. Relative significance of direct and indirect effects of predation by planktivorous fish on zooplankton. Hydrobiologia 272, 201–210 (1994).

    Google Scholar 

  • 44.

    Maszczyk, P. et al. Combined effects of elevated epilimnetic temperature and metalimnetic hypoxia on the predation rate of planktivorous fish. J. Plankton Res. 41, 709–722 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Świerzowski, A. & Godlewska, M. Effects of hydropower plant activities on fish population, abundance and distribution. Arch. Pol. Fish. 9, 157–172 (2001).

    Google Scholar 

  • 46.

    Thorslund, A. E. Potential uses of wastewaters and heated effluents. European Inland Fisheries Advisory Commission Occasional Paper No. 5. (Food and Agriculture Organization of the United Nations, 1971).

  • 47.

    Warren, G. J., Evans, M. S., Jude, D. J. & Ayers, J. C. Seasonal variations in copepod size: effects of temperature, food abundance, and vertebrate predation. J. Plankton Res. 8, 841–853 (1986).

    Google Scholar 

  • 48.

    Tunowski, J. Zooplankton structure in heated lakes with differing thermal regimes and water retention. Arch. Pol. Fish. 17, 291–303 (2009).

    Google Scholar 

  • 49.

    Tunowski, J. Changes in zooplankton abundance and community structure in the cooling channel system of the Konin and Pątnów power plants. Arch. Pol. Fish. 17, 279–289 (2009).

    Google Scholar 

  • 50.

    Stibor, H. & Lampert, W. Components of additive variance in life-history traits of Daphnia hyalina: seasonal differences in the response to predator signals. Oikos 88, 129–138 (2000).

    Google Scholar 

  • 51.

    Tereshchenko, V. G., Kapusta, A., Wilkońska, H. & Strelnikova, A. P. Long-term changes in 0+ fish assemblages in the littoral zone of heated lakes. I. Diversity, evennes and dynamic phase portrait of species structure. Arch Pol Fish 15, 415–430 (2007).

  • 52.

    Brzezinski, T. Filamentous cyanobacteria alter the relative fitness in a Daphnia hybrid species complex. Freshw. Biol. 60, 101–110 (2015).

    Google Scholar 

  • 53.

    Dziuba, M. K., Cerbin, S. & Wejnerowski, L. Is bigger better? A possibility for adaptation of Daphnia to filamentous cyanobacteria in the face of global warming. Hydrobiologia 798, 105–118 (2017).

    Google Scholar 

  • 54.

    Socha, D. & Hutorowicz, A. Changes in the quantitative relations of the phytoplankton in heated lakes. Arch. Pol. Fish. 17, 239–251 (2009).

    Google Scholar 

  • 55.

    Geerts, A. N. et al. Rapid evolution of thermal tolerance in the water flea Daphnia. Nat. Clim. Change 5, 665–668 (2015).

    ADS  Google Scholar 

  • 56.

    Van Doorslaer, W. et al. Experimental thermal microevolution in community-embedded Daphnia populations. Clim. Res. 43, 81–89 (2010).

    Google Scholar 

  • 57.

    Wolinska, J., Löffler, A. & Spaak, P. Taxon-specific reaction norms to predator cues in a hybrid Daphnia complex. Freshw. Biol. 52, 1198–1209 (2007).

    Google Scholar 

  • 58.

    Wolinska, J., Bittner, K., Ebert, D. & Spaak, P. The coexistence of hybrid and parental Daphnia: the role of parasites. Proc Biol Sci 273, 1977–1983 (2006).

    PubMed  PubMed Central  Google Scholar 

  • 59.

    Lindberg, R. T. & Collins, S. Quality–quantity trade-offs drive functional trait evolution in a model microalgal ‘climate change winner’. Ecol. Lett. 23, 780–790 (2020).

    PubMed  Google Scholar 

  • 60.

    Lampert, W. Daphnia: model herbivore, predator and prey. Pol. J. Ecol. 54, 607–620 (2006).

    Google Scholar 

  • 61.

    Bartosiewicz, M. et al. Hot tops, cold bottoms: Synergistic climate warming and shielding effects increase carbon burial in lakes. Limnol. Oceanogr. Lett. 4, 132–144 (2019).

    CAS  Google Scholar 

  • 62.

    Stawecki, K., Zdanowski, B. & Pyka, J. P. Long-term changes in post-cooling water loads from power plants and thermal and oxygen conditions in stratified lakes. Arch. Pol. Fish. 21, 331–342 (2013).

    CAS  Google Scholar 

  • 63.

    Bledzki, L. A. & Rybak, J. I. Freshwater Crustacean Zooplankton of Europe. Cladocera & Copepoda (Calanoida, Cyclopoida) Key to species identification, with notes on ecology, distribution, methods and introduction to data analysis. (Springer International Publishing Switzerland, 2016).

  • 64.

    Appleby, P. G. Chronostratigraphic techniques in recent sediments. In Last, W.M. and Smol, J.P., editors, Tracking environmental change using lake sediments volume 1: basin analysis, coring, and chronological techniques. (Kluwer Academic, London, 2001).

  • 65.

    Bruel, R. & Sabatier, P. Serac: a R package for ShortlivED RAdionuclide Chronology of recent sediment cores. J. Environ. Activity https://doi.org/10.31223/osf.io/f4yma (2020).

    Article  Google Scholar 

  • 66.

    Szczuciński, W. et al. Modern sedimentation and sediment dispersal pattern on the continental shelf off the Mekong River delta, South China Sea. Glob. Planet. Change 110, 195–213 (2013).

    ADS  Google Scholar 

  • 67.

    Dabert, M., Witalinski, W., Kazmierski, A., Olszanowski, Z. & Dabert, J. Molecular phylogeny of acariform mites (Acari, Arachnida): Strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol. Phylogenet. Evol. 56, 222–241 (2010).

    PubMed  Google Scholar 

  • 68.

    Brede, N. et al. Microsatellite markers for European Daphnia. Mol. Ecol. Notes 6, 536–539 (2006).

    CAS  Google Scholar 

  • 69.

    Toonen, R. J. & Hughes, S. Increased throughput for fragment analysis on ABI Prism 377 automated sequencer using a membrane comb and STR and software. Biotechniques 31, 1320–1324 (2001).

    CAS  PubMed  Google Scholar 

  • 70.

    Alberto, F. MsatAllele: Visualizes the scoring and binning of microsatellite fragment sizes. R Package Version 104 (2013).

  • 71.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 32, 1792–1797 (2004).

    CAS  PubMed  Google Scholar 

  • 72.

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 73.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 74.

    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet Resour. 4, 359–361 (2012).

    Google Scholar 

  • 75.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS  PubMed  Google Scholar 

  • 76.

    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 77.

    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2006).

    PubMed  Google Scholar 

  • 78.

    Bohonak, A. J. IBD (isolation by distance): a program for analyses of isolation by distance. J. Hered. 93, 153–154 (2002).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Climate-driven changes in the composition of New World plant communities

    Mobility Systems Center awards four projects for low-carbon transportation research