in

Incorporating hydrology into climate suitability models changes projections of malaria transmission in Africa

  • 1.

    World Health Organisation. World Malaria Report 2018 (World Health Organization, Geneva, 2018).

  • 2.

    Caminade, C. et al. Impact of climate change on global malaria distribution. Proc. Natl Acad. Sci. 111, 3286–3291 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Shapiro, L. L., Whitehead, S. A. & Thomas, M. B. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol. 15, 2003489 (2017).

    Google Scholar 

  • 4.

    Jepson, W. F., Moutia, A. & Courtois, C. The malaria problem in Mauritius: the binomics of Mauritian anophelines. Bull. Entomol. Res. 38, 177–208 (1947).

    CAS  PubMed  Google Scholar 

  • 5.

    Waite, J. L., Suh, E., Lynch, P. A. & Thomas, M. B. Exploring the lower thermal limits for development of the human malaria parasite, Plasmodium falciparum. Biol. Lett. 15, 20190275 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 6.

    Bayoh, M. N. & Lindsay, S. W. Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull. Entomol. Res. 93, 375–381 (2003).

    CAS  PubMed  Google Scholar 

  • 7.

    Depinay, J. M. et al. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar. J. 3, 29 (2004).

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Mordecai, E. A. et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16, 22–30 (2012).

    PubMed  Google Scholar 

  • 9.

    Craig, M. H., Snow, R. W. & Le Sueur, D. Climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol. Today 15, 105–111 (1999).

    CAS  PubMed  Google Scholar 

  • 10.

    Parham, P. E. & Michael, E. Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118, 620–626 (2010).

    PubMed  Google Scholar 

  • 11.

    Ryan, S. J. et al. Mapping physiological suitability limits for malaria in Africa under climate change. Vector-Borne Zoonotic Dis. 15, 718–725 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Smith, M. W., Macklin, M. G. & Thomas, C. J. Hydrological and geomorphological controls of malaria transmission. Earth Sci. Rev. 116, 109–127 (2013).

    ADS  Google Scholar 

  • 13.

    Bomblies, A., Duchemin, J. B. & Eltahir, E. A. Hydrology of malaria: model development and application to a Sahelian village. Water Resour. Res. 44, W12445 (2008).

    ADS  Google Scholar 

  • 14.

    Yamana, T. K., Bomblies, A. & Eltahir, E. A. Climate change unlikely to increase malaria burden in West Africa. Nat. Clim. Change 6, 1009–1013 (2016).

    ADS  Google Scholar 

  • 15.

    Small, J., Goetz, S. J. & Hay, S. I. Climatic suitability for malaria transmission in Africa, 1911–1995. Proc. Natl Acad. Sci. USA 100, 15341–15345 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    Thomas, C. J., Davies, G. & Dunn, C. E. Mixed picture for changes in stable malaria distribution with future climate in Africa. Trends Parasitol. 20, 216–220 (2004).

    PubMed  Google Scholar 

  • 17.

    Ebi, K. L. et al. Climate suitability for stable malaria transmission in Zimbabwe under different climate change scenarios. Clim. Change 73, 375–393 (2005).

    ADS  Google Scholar 

  • 18.

    Van Lieshout, M., Kovats, R. S., Livermore, M. T. J. & Martens, P. Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Glob. Environ. Change 14, 87–99 (2004).

    Google Scholar 

  • 19.

    Kiszewski, A. et al. A global index representing the stability of malaria transmission. Am. J. Trop. Med. Hyg. 70, 486–498 (2004).

    PubMed  Google Scholar 

  • 20.

    Ermert, V., Fink, A. H., Jones, A. E. & Morse, A. P. Development of a new version of the Liverpool Malaria Model. II. Calibration and validation for West Africa. Malar. J. 10, 62 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Martens, W. J. M., Niessen, L. W., Rotmans, J. & McMichael, A. J. Potential impacts of global climate change on malaria risk. Environ. Health Perspect. 103, 458–464 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Tanser, F., Sharp, B. L. & Le Sueur, D. Potential effect of climate change on malaria transmission in Africa. Lancet 362, 1792–9178 (2003).

    PubMed  Google Scholar 

  • 23.

    Garnham, P. C. C. The incidence of malaria at high altitudes. J. Malar. Soc. 7, 275–284 (1948).

    CAS  Google Scholar 

  • 24.

    Lindsay, S. W., Parson, L. & Thomas, C. J. Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data. Proc. R. Soc. B Biol. Sci. 265, 847–854 (1998).

    CAS  Google Scholar 

  • 25.

    Mabaso, M. L., Craig, M., Ross, A. & Smith, T. Environmental predictors of the seasonality of malaria transmission in Africa: the challenge. Am. J. Trop. Med. Hyg. 76, 33–38 (2007).

    PubMed  Google Scholar 

  • 26.

    Kibret, S. et al. Malaria impact of large dams in sub-Saharan Africa: maps, estimates and predictions. Malar. J. 14, 339 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Lysenko, A. J. & Semashko, I. N. in Itogi Nauki: Medicinskaja Geografija (ed. Lebedew, A. W.) 25–146 (Academy of Sciences, Moscow, 1968) (in Russian).

  • 28.

    Ageep, T. B. et al. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control. Malar. J. 8, 123 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Fuller, D. O., Parenti, M. S., Hassan, A. N. & Beier, J. C. Linking land cover and species distribution models to project potential ranges of malaria vectors: an example using Anopheles arabiensis in Sudan and Upper Egypt. Malar. J. 11, 264 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Gemperli, A., Vounatsou, P., Sogoba, N. & Smith, T. Malaria mapping using transmission models: application to survey data from Mali. Am. J. Epidemiol. 163, 289–297 (2005).

    PubMed  Google Scholar 

  • 31.

    Snow, R. W., Noor, A. M. & Hay, S. I. Malaria in Somalia: Assembling the Evidence and Modeling Risks (University of Oxford, UK, 2006).

  • 32.

    Hulme, M., Doherty, R., Ngara, T., New, M. & Lister, D. African climate change: 1900–2100. Clim. Res. 17, 145–168 (2001).

    Google Scholar 

  • 33.

    Tierney, J. E., Ummenhofer, C. C. & de Menocal, P. B. Past and future rainfall in the Horn of Africa. Sci. Adv. 1, e1500682 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Reiter, P. Global warming and malaria: knowing the horse before hitching the cart. Malar. J. 7, S3 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    Gething, P. et al. Climate change and the global malaria recession. Nature 465, 342–345 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Yamazaki, D., Kanae, S., Kim, H. & Oki, T. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res. 47, W04501 (2011).

    ADS  Google Scholar 

  • 37.

    Hazeleger, W. et al. EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim. Dyn. 39, 2611–2629 (2012).

    Google Scholar 

  • 38.

    Alfieri, L. et al. Global projections of river flood risk in a warmer world. Earth’s Future 5, 171–182 (2017).

    ADS  Google Scholar 

  • 39.

    Muerth, M. J. et al. On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff. Hydrol. Earth Syst. Sci. 17, 1189–1204 (2013).

    ADS  Google Scholar 

  • 40.

    Hirpa, F. A. et al. Streamflow response to climate change in the Greater Horn of Africa. Clim. Change 156, 341–363 (2019).

    ADS  Google Scholar 

  • 41.

    van der Knijff, J. M., Younis, J. & de Roo, A. P. J. LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geograph. Inf. Sci. 24, 189–212 (2010).

    Google Scholar 

  • 42.

    Burek, P., van der Knijff, J. & de Roo, A. P. J. LISFLOOD, Distributed Water Balance and Flood Simulation Model Revised User Manual (Publ. Off., Luxembourg, 2013).

  • 43.

    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos, Trans. Am. Geophys. Union 89, 93–94 (2008).

    ADS  Google Scholar 

  • 44.

    Wu, H. et al. A new global river network database for macroscale hydrologic modeling. Water Resour. Res. 48, W09701 (2012).

    ADS  Google Scholar 

  • 45.

    Hengl, T. et al. SoilGrids1km—global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Paaijmans, K. P., Takken, W., Githeko, A. K. & Jacobs, A. F. G. The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae. Int. J. Biometeorol. 52, 747–753 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 47.

    Thomas, C. J., Cross, D. E. & Bøgh, C. Landscape movements of Anopheles gambiae malaria vector mosquitoes in rural Gambia. PLoS ONE 8, e68679 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Worldpop. Africa Continental Population Datasets (2000–2020) v2.0. https://doi.org/10.5258/SOTON/WP00004 (2016).

  • 49.

    Worldpop. Africa Continental age/sex structure Population Datasets 2000/05/10/15/20 V5.0. https://www.worldpop.org/geodata/summary?id=1276 (2016).

  • 50.

    James, W. H. et al. Gridded birth and pregnancy datasets for Africa, Latin America and the Caribbean. Sci. Data 5, 180090 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019 Online ed (United Nations, 2019).

  • 52.

    Smith, M. W. et al. LIS-MAL Estimates of Hydro-Climatic Suitability for Malaria Transmission in Africa (1971–2100). [Dataset]. https://doi.org/10.5518/786 (University of Leeds, 2020).


  • Source: Ecology - nature.com

    Interpreting ancient food practices: stable isotope and molecular analyses of visible and absorbed residues from a year-long cooking experiment

    Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene