in

New insights into the food web of an Australian tropical river to inform water resource management

  • 1.

    Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio https://doi.org/10.1007/s13280-020-01318-8 (2020).

    Article  PubMed  Google Scholar 

  • 2.

    Poff, N. L. et al. The natural flow regime. Bioscience 47, 769–784. https://doi.org/10.2307/1313099 (1997).

    Article  Google Scholar 

  • 3.

    Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182. https://doi.org/10.1017/S1464793105006950 (2006).

    Article  PubMed  Google Scholar 

  • 4.

    Sparks, R. E. Need for ecosystem management of large rivers and their floodplains. Bioscience 45, 168–182. https://doi.org/10.2307/1312556 (1995).

    Article  Google Scholar 

  • 5.

    Hancock, P. J. Human impacts on the stream-groundwater exchange zone. Environ. Manage. 29, 763–781. https://doi.org/10.1007/s00267-001-0064-5 (2002).

    Article  PubMed  Google Scholar 

  • 6.

    Pringle, C. What is hydrologic connectivity and why is it ecologically important?. Hydrol. Process. 17, 2685–2689. https://doi.org/10.1002/hyp.5145 (2003).

    ADS  Article  Google Scholar 

  • 7.

    Reid, M. A., Delong, M. D. & Thoms, M. C. The influence of hydrological connectivity on food web structure in floodplain lakes. River Res. Appl. 28, 827–844. https://doi.org/10.1002/rra.1491 (2012).

    Article  Google Scholar 

  • 8.

    Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. Bioscience 70, 330–342. https://doi.org/10.1093/biosci/biaa002 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Australian Government. Our North, Our Future: White Paper on Developing Northern Australia. https://industry.gov.au/ONA/WhitePaper/Documents/northern_australia_white_paper.pdf (2015).

  • 10.

    Petheram, C., Bruce, C., Chilcott, C. & Watson, I. Water resource assessment for the Fitzroy catchment. A report to the Australian Government from the CSIRO Northern Australia Water Resource Assessment, part of the National Water Infrastructure Development Fund: Water Resource Assessments (CSIRO, Australia, 2018).

    Google Scholar 

  • 11.

    Pusey, B. Aquatic Biodiversity in Northern Australia: Patterns Threats and Future (Charles Darwin University Press, Darwin, 2011).

    Google Scholar 

  • 12.

    Jackson, S., Finn, M. & Featherston, P. Aquatic resource use by Indigenous Australians in two tropical river catchments: the Fitzroy River and Daly River. Hum. Ecol. 40, 893–908. https://doi.org/10.1007/s10745-012-9518-z (2012).

    Article  Google Scholar 

  • 13.

    Douglas, M. M. et al. Conceptualizing hydro-socio-ecological relationships to enable more integrated and inclusive water allocation planning. One Earth 1, 361–373. https://doi.org/10.1016/j.oneear.2019.10.021 (2019).

    Article  Google Scholar 

  • 14.

    Lear, K. O. et al. Recruitment of a critically endangered sawfish into a riverine nursery depends on natural flow regimes. Sci. Rep. 9, 17071. https://doi.org/10.1038/s41598-019-53511-9 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Fry, B. & Sherr, E. B. in Stable Isotopes in Ecological Research Vol. 68 (eds P.W. Rundel, J. R. Ehleringer, & K. A. Nagy) (Springer, New York, 1989).

  • 16.

    Jardine, T. D. et al. Consumer-resource coupling in wet-dry tropical rivers. J. Anim. Ecol. 81, 310–322. https://doi.org/10.1111/j.1365-2656.2011.01925.x (2012).

    Article  PubMed  Google Scholar 

  • 17.

    Fellman, J. B., Pettit, N. E., Kalic, J. & Grierson, P. F. Influence of stream–floodplain biogeochemical linkages on aquatic foodweb structure along a gradient of stream size in a tropical catchment. Freshw. Sci. 32, 217–229. https://doi.org/10.1899/11-117.1 (2013).

    Article  Google Scholar 

  • 18.

    Burford, M. A., Cook, A. J., Fellows, C. S., Balcombe, S. R. & Bunn, S. E. Sources of carbon fuelling production in an arid floodplain river. Mar. Freshw. Res. 59, 224–234 (2008).

    CAS  Article  Google Scholar 

  • 19.

    Hunt, R. J. et al. Temporal and spatial variation in ecosystem metabolism and food web carbon transfer in a wet-dry tropical river. Freshw. Biol. 57, 435–450. https://doi.org/10.1111/j.1365-2427.2011.02708.x (2012).

    CAS  Article  Google Scholar 

  • 20.

    Jardine, T. D. et al. Carbon from periphyton supports fish biomass in waterholes of a wet-dry tropcical river. River Res. Appl. 29, 560–573. https://doi.org/10.1002/rra.2554 (2013).

    Article  Google Scholar 

  • 21.

    Junk, W. J., Bayley, P. B. & Sparks, R. E. The Flood Pulse Concept In River-Floodplain Systems (Canadian Special Publication of Fisheries and Aquatic Sciences, Toronto, 1989).

    Google Scholar 

  • 22.

    Zeug, S. C. & Winemiller, K. O. Evidence supporting the importance of terrestrial carbon in a large-river food web. Ecology 89, 1733–1743. https://doi.org/10.1890/07-1064.1 (2008).

    Article  PubMed  Google Scholar 

  • 23.

    Karim, F. et al. Floodplain Inundation Mapping and Modelling for the Fitzroy, Darwin and Mitchell Catchments (CSIRO, Australia, 2018).

    Google Scholar 

  • 24.

    Burrows, R., Beesley, L., Douglas, M., Pusey, B. & Kennard, M. Water velocity and groundwater upwelling control benthic algae biomass in a sandy tropical river during base flow: implications for water resource development. Hydrobiologia 847, 1207–1219 (2020).

    Article  Google Scholar 

  • 25.

    Bunn, S. E. & Arthington, A. H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage. 30, 492–507. https://doi.org/10.1007/s00267-002-2737-0 (2002).

    Article  PubMed  Google Scholar 

  • 26.

    Staunton-Smith, J., Robins, J. B., Mayer, D. G., Sellin, M. J. & Halliday, I. A. Does the quantity and timing of fresh water flowing into a dry tropical estuary affect year-class strength of barramundi (Lates calcarifer)?. Mar. Freshw. Res. 55, 787–797. https://doi.org/10.1071/MF03198 (2004).

    Article  Google Scholar 

  • 27.

    Morgan, D. L., Allen, M. G., Bedford, P. & Horstman, M. Fish fauna of the Fitzroy River in the Kimberley region of Western Australia: including the Bunuba, Gooniyandi, Ngarinyin, Nyikina and Walmajarri Aboriginal names. Rec. West. Austral. Museum 22, 147–161 (2004).

    Article  Google Scholar 

  • 28.

    Jardine, T. D. et al. Fish mediate high food web connectivity in the lower reaches of a tropical floodplain river. Oecologia 168, 829–838. https://doi.org/10.1007/s00442-011-2148-0 (2012).

    ADS  Article  PubMed  Google Scholar 

  • 29.

    Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. in Model Selection and Multimodel Inference 2nd edn (Springer, New York, 2002).

    Google Scholar 

  • 30.

    Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096. https://doi.org/10.7717/peerj.5096 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    MacAvoy, S. E., Macko, S. A. & Garman, G. C. Tracing marine biomass into tidal freshwater ecosystems using stable sulfur isotopes. Sci. Nat. 85, 544–546. https://doi.org/10.1007/s001140050546 (1998).

    CAS  Article  Google Scholar 

  • 32.

    Douglas, M. M., Bunn, S. E. & Davies, P. M. River and wetland food webs in Australias wet-dry tropics: general principles and implications for management. Mar. Freshw. Res. 56, 329–342. https://doi.org/10.1071/MF04084 (2005).

    Article  Google Scholar 

  • 33.

    Hill, W. R., Rinchard, J. & Czesny, S. Light, nutrients and the fatty acid composition of stream periphyton. Freshw. Biol. 56, 1825–1836. https://doi.org/10.1111/j.1365-2427.2011.02622.x (2011).

    CAS  Article  Google Scholar 

  • 34.

    Guo, F., Kainz, M. J., Sheldon, F. & Bunn, S. E. The importance of high-quality algal food sources in stream food webs: current status and future perspectives. Freshw. Biol. 61, 815–831. https://doi.org/10.1111/fwb.12755 (2016).

    CAS  Article  Google Scholar 

  • 35.

    Pettit, N. E. et al. Productivity and connectivity in tropical riverscapes of northern Australia: ecological insights for management. Ecosystems 20, 492–514. https://doi.org/10.1007/s10021-016-0037-4 (2017).

    Article  Google Scholar 

  • 36.

    Medeiros, E. S. F. & Arthington, A. H. The importance of zooplankton in the diets of three native fish species in floodplain waterholes of a dryland river, the Macintyre River, Australia. Hydrobiologia 614, 19–31. https://doi.org/10.1007/s10750-008-9533-7 (2008).

    Article  Google Scholar 

  • 37.

    Hladyz, S., Nielsen, D. L., Suter, P. J. & Krull, E. S. Temporal variations in organic carbon utilization by consumers in a lowland river. River Res. Appl. 28, 513–528. https://doi.org/10.1002/rra.1467 (2012).

    Article  Google Scholar 

  • 38.

    Thorburn, D. C., Gill, H. & Morgan, D. L. Predator and prey interactions of fishes of a tropical Western Australia river revealed by dietary and stable isotope analyses. J. R. Soc. West. Austral. 97, 363–387 (2014).

    Google Scholar 

  • 39.

    Davis, A. M. et al. Trophic ecology of northern Australia’s terapontids: ontogenetic dietary shifts and feeding classification. J. Fish Biol. 78, 265–286. https://doi.org/10.1111/j.1095-8649.2010.02862.x (2011).

    CAS  Article  PubMed  Google Scholar 

  • 40.

    Jardine, T. D. et al. Body size drives allochthony in food webs of tropical rivers. Oecologia 183, 505–517. https://doi.org/10.1007/s00442-016-3786-z (2017).

    ADS  Article  PubMed  Google Scholar 

  • 41.

    Peterson, B. J. & Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18, 293–320 (1987).

    Article  Google Scholar 

  • 42.

    Roberts, B. H. et al. Migration to freshwater increases growth rates in a facultatively catadromous tropical fish. Oecologia 191, 253–260 (2019).

    ADS  Article  Google Scholar 

  • 43.

    Crook, D. A. et al. Tracking the resource pulse: movement responses of fish to dynamic floodplain habitat in a tropical river. J. Anim. Ecol. 89, 795–807. https://doi.org/10.1111/1365-2656.13146 (2020).

    Article  PubMed  Google Scholar 

  • 44.

    Kwak, T. J. Lateral movement and use of floodplain habitat by fishes of the Kankakee River, Illinois. Am. Midl. Nat. 120, 241–249. https://doi.org/10.2307/2425995 (1988).

    Article  Google Scholar 

  • 45.

    Jackson, S., Finn, M., Woodward, E. & Featherston, P. Indigenous Socio-Economic Values and River Flows (CSIRO Ecosystem Sciences, Australia, 2011).

    Google Scholar 

  • 46.

    Townsend, S. A. & Padovan, A. V. The seasonal accrual and loss of benthic algae (Spirogyra) in the Daly River, an oligotrophic river in tropical Australia. Mar. Freshw. Res. 56, 317–327. https://doi.org/10.1071/MF04079 (2005).

    CAS  Article  Google Scholar 

  • 47.

    Fellman, J. B. et al. Dissolved organic carbon biolability decreases along with its modernization in fluvial networks in an ancient landscape. Ecology 95, 2622–2632. https://doi.org/10.1890/13-1360.1 (2014).

    Article  Google Scholar 

  • 48.

    Pace, M. L. et al. Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427, 240–243. https://doi.org/10.1038/nature02227 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 49.

    Baldwin, D. S., Colloff, M. J., Mitrovic, S. M., Bond, N. R. & Wolfenden, B. Restoring dissolved organic carbon subsidies from floodplains to lowland river food webs: a role for environmental flows?. Mar. Freshw. Res. 67, 1387–1399. https://doi.org/10.1071/MF15382 (2016).

    CAS  Article  Google Scholar 

  • 50.

    Kennard, M. J. et al. Classification of natural flow regimes in Australia to support environmental flow management. Freshw. Biol. 55, 171–193. https://doi.org/10.1111/j.1365-2427.2009.02307.x (2010).

    Article  Google Scholar 

  • 51.

    Taylor, C. F. H. in Limnology of the Fitzroy River, Western Australia: a technical workshop. (eds A Storey & L Beesley).

  • 52.

    Hesslein, R. H., Capel, M. J., Fox, D. E. & Hallard, K. A. Stable isotopes of sulfur, carbon, and nitrogen as indicators of trophic level and fish migration in the lower Mackenzie River Basin, Canada. Can. J. Fish. Aquat. Sci. 48, 2258–2265. https://doi.org/10.1139/f91-265 (1991).

    Article  Google Scholar 

  • 53.

    Herzka, S. Z. Assessing connectivity of estuarine fishes based on stable isotope ratio analysis. Estuar. Coast. Shelf Sci. 64, 58–69. https://doi.org/10.1016/j.ecss.2005.02.006 (2005).

    ADS  Article  Google Scholar 

  • 54.

    Pusey, B. J. et al. Carbon sources supporting Australia’s most widely distributed freshwater fish, Nematalosa erebi (Günther) (Clupeidae: Dorosomatinae). Mar. Freshw. Res. https://doi.org/10.1071/MF20014 (2020).

    Article  Google Scholar 

  • 55.

    Hecky, R. & Hesslein, R. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. J. N. Am. Benthol. Soc. 14, 631–653 (1995).

    Article  Google Scholar 

  • 56.

    Yoshii, K. et al. Stable isotope analyses of the pelagic food web in Lake Baikal. Limnol. Oceanogr. 44, 502–511 (1999).

    ADS  Article  Google Scholar 

  • 57.

    Pinnegar, J. K. & Polunin, N. V. C. Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct. Ecol. 13, 225–231. https://doi.org/10.1046/j.1365-2435.1999.00301.x (1999).

    Article  Google Scholar 

  • 58.

    Skrzypek, G. Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal. Bioanal. Chem. 405, 2815–2823. https://doi.org/10.1007/s00216-012-6517-2 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 59.

    Logan, J. M. et al. Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J. Anim. Ecol. 77, 838–846. https://doi.org/10.1111/j.1365-2656.2008.01394.x (2008).

    Article  PubMed  Google Scholar 

  • 60.

    Skinner, M. M., Martin, A. A. & Moore, B. C. Is lipid correction necessary in the stable isotope analysis of fish tissues?. Rapid Commun. Mass Spectrom. 30, 881–889. https://doi.org/10.1002/rcm.7480 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 61.

    Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5, e9672. https://doi.org/10.1371/journal.pone.0009672 (2010).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 62.

    Sauer, J. R. & Link, W. A. Hierarchical modeling of population stability and species group attributes from survey data. Ecology 83, 1743–1751. https://doi.org/10.1890/0012-9658(2002)083[1743:Hmopsa]2.0.Co;2 (2002).

    Article  Google Scholar 

  • 63.

    McCutchan, J. H. Jr., Lewis, W. M. Jr., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x (2003).

    CAS  Article  Google Scholar 

  • 64.

    Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics 24, 387–399. https://doi.org/10.1002/env.2221 (2013).

    MathSciNet  Article  Google Scholar 

  • 65.

    Blanchette, M. L., Davis, A. M., Jardine, T. D. & Pearson, R. G. Omnivory and opportunism characterize food webs in a large dry-tropics river system. Freshw. Sci. 33, 142–158. https://doi.org/10.1086/674632 (2014).

    Article  Google Scholar 

  • 66.

    Bunn, S. E., Leigh, C. & Jardine, T. D. Diet-tissue fractionation of δ15N by consumers from streams and rivers. Limnol. Oceanogr. 58, 765–773. https://doi.org/10.4319/lo.2013.58.3.0765 (2013).

    ADS  CAS  Article  Google Scholar 

  • 67.

    Pusey, B., Kennard, M. & Arthington, A. Freshwater Fishes of North-Eastern Australia (CSIRO publishing, Clayton, 2004).

    Google Scholar 

  • 68.

    Post, D. M. Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology 83, 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:Usitet]2.0.Co;2 (2002).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Species distribution models advance our knowledge of the Neanderthals’ paleoecology on the Iranian Plateau

    Six strategic areas identified for shared faculty hiring in computing